Citation: ZHAN Xuan, ZHAO Fang, ZHANG Lei, LÜ Biao-Biao PENG Su-Hong, YING Xiao, WANG Hui, LIU Hai-Yang, . Influence of Halogenated Benzene Solvents on the Photophysical Properties of Gallium Corroles: the External Heavy Atom Effect[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 771-779. doi: 10.3866/PKU.WHXB201601043 shu

Influence of Halogenated Benzene Solvents on the Photophysical Properties of Gallium Corroles: the External Heavy Atom Effect

  • Corresponding author: ZHANG Lei,  LIU Hai-Yang, 
  • Received Date: 3 November 2015
    Available Online: 31 December 2015

    Fund Project: 国家自然科学基金(21171057,21371059) (21171057,21371059)国家重点基础研究发展规划项目(973)(2013CB922403) (973)(2013CB922403)中山大学光电材料与技术国家重点实验室开放基金(OEMT-2015-KF-05)资助项目 (OEMT-2015-KF-05)

  • The photophysical properties of pentafluorophenyl-substituted gallium corroles in halogenated benzenes were investigated using ultraviolet-visible (UV-Vis), steady-state, time-resolved fluorescence, and femtosecond transient absorption spectroscopies. The results showed that the absorption maximum wavelength of the gallium corroles was mainly related to the dispersion force of the halogenated benzene solvents. The external heavy atom effect of halogenated benzenes may markedly lower the fluorescence quantum yield of gallium corrole complexes. Photoinduced electron transfer between the gallium corroles and halogenated benzene solvents was detected by femtosecond transient absorption spectroscopy. The experimental evidence showed that the heavy atom effect of the solvent might lower the charge recombination rate of charge-separated gallium corrole-solvent complexes.
  • 加载中
    1. [1]

      (1) Zdilla, M. J.; Abu, O. M. Inorg. Chem. 2008, 47 (22), 10718. doi: 10.1021/ic801182q

    2. [2]

      (2) Flamigni, L.; GryKo, D. T. Chem. Soc. Rev. 2009, 38, 1635. doi: 10.1039/b805230c

    3. [3]

      (3) Gross, Z.; Galili, N.; Saltsman, I. Angew. Chem. Int. Edit.1999, 38, 1427. doi: 1433-7851/99/3810-1428

    4. [4]

      (4) Paolesse, R.; Jaquinod, L.; Nurco, D.; Mini, S.; Sagone, F.; Boschi, T.; Smith, K. M. Chem. Commun. 1999, 1307. doi: 10.1039/A903247I

    5. [5]

      (5) Bose, S.; Pariyar, A.; Biswas, A. N.; Bandyopadhyay, P. Catal. Commum. 2011, 12, 1193. doi: 10.1016/j.catcom.2011.04.026

    6. [6]

      (6) Liu, H. Y.; Mahmood, M. H. R.; Qiu, S. X.; Chang, C. K.Coord. Chem. Rev. 2013, 25, 1306. doi: 10.1016/j.ccr.2012.12.017

    7. [7]

      (7) Chang, C. K.; Kong, P.W.; Liu, H. Y.; Yeung, L. L.; Koon, H.K.; Mak, N. K. Proc. SPIE-Int. Soc. Opt. Eng. 2006, 6139, 613911. doi: 10.1117/12.646328

    8. [8]

      (8) Zhang, Y.; Chen, H.; Wen, J. Y.; Wang, X. L.; Wang, H.; Ji, L.N.; Liu, H. Y. Chem. J. Chin. Univ. 2013, 34, 2462. [张阳, 陈欢, 闻金燕, 王湘利, 王惠, 计亮年, 刘海洋. 高等化学学报, 2013, 34, 2462.] doi: 10.7503/cjcu20130610

    9. [9]

      (9) Robert, C.; Ohkawara, T. Chem. Eur. J. 2014, 20 (16), 4789. doi: 10.1002/chem.v20.16

    10. [10]

      (10) Zou, H. B.; Yang, H.; Liu, Z. Y.; Liu, H. Y. Organomeallic2015, 34 (12), 2791. doi: 10.1021/acs.organomet.5b00069

    11. [11]

      (11) Barata, J. F. B.; Zamarron, A.; Neves, M.; Graca, P. M. S. Eur. J. Med. Chem. 2015, 92, 135. doi: 10.1016/j.ejmech.2014.12.025

    12. [12]

      (12) Chun, Z.; Jin, X. J. Power Sources 2015, 283, 343. doi: 10.1016/j.jpowsour.2015.02.136

    13. [13]

      (13) Basumatary, B.; Sekhar, A. Inorg. Chem. 2015, 54 (9), 4257. doi: 10.1021/ic502919s

    14. [14]

      (14) Santtos, C. I. M.; Oliveria, E. Inorg. Chim. Acta 2014, 417, 148. doi: 10.1016/j.ica.2013.09.049

    15. [15]

      (15) Agadjannian, H.; Ma, J.; Rentsendorj, A.; Valluripalli, V.; Hwang, J. Y.; Mahammed, A.; Farkas, D. L.; Gray, H. B.; Gross, Z.; Medina-Kauwe, L. K. Proc. Natl. Acad. Sci. U. S. A.2009, 106 (15), 6105. doi: 10.1073/pnas.0901531106

    16. [16]

      (16) Wang, J. Y.; Lubow, I.; Chu, D.; Hwang, J. Y.; Lubow, J.; Chu, D.; Ma, J.; Agadjanian, H.; Sims, J.; Gray, H. B.; Gross, Z.; Farkas, D. L.; Lali, K.; Medina-Kauwe, L. K. Mol. Pharm.2011, 8, 2233. doi: 10.1021/mp200094w

    17. [17]

      (17) Lim, P.; Mahammed, A.; OKun, Z.; Saltsman, I.; Gross, Z.; Gray, H. B.; Termini, J. Chem. Res. Toxicol. 2012, 25, 400. doi: 10.1021/tx200452w

    18. [18]

      (18) Peng, K. M.; Shao, W. L.; Wang, H. H.; Ying, X.; Wang, H.; Ji, L. N.; Liu, H. Y. Acta Phys. -Chim. Sin. 2011, 27 (1), 199. [彭开美, 邵文莉, 汪华华, 应晓, 王惠, 计亮年, 刘海洋.物理化学学报, 2011, 27 (1), 199.] doi: 10.3866/PKU.WHXB20110129

    19. [19]

      (19) Zhang, L.; Liu, Z. Y.; Zhan, X.; Liu, H. Y. Photochem. Photobiol. Sci. 2015, 14, 953. doi: 10.1039/c5pp00060b

    20. [20]

      (20) Liu, H. Y.; Lai, T. S.; Yeung, L. L. Org. Lett. 2003, 5, 617. doi: 10.1021/ol027111i

    21. [21]

      (21) Jozefowicz, M.; Bajorek, M.; Heldt, J. J. Lumin. 2014, 153, 152. doi: 10.1016/j.jlumin.2014.03.019

    22. [22]

      (22) Strat, G.; Strat, M. Spectros. Lett. 1994, 27, 177. doi: 10.1080/00387019408000836

    23. [23]

      (23) Liu, X.; Mahammed, A.; Tripathy, U.; Gross, Z.; Steer, R. P.Chem. Phys. Lett. 2008, 459, 113. doi: 10.1016/j.cplett.2008.05.038

    24. [24]

      (24) Shao, W. L. Photophysical Study on Ultrafast ElectronTransfer in Biomolecular Systems. Sun-Yat Sen University: Guangzhou, 2012; pp 15-30. [邵文莉. 新型光敏剂Corrole的激发态动力学及单线态氧产生过程研究[D]. 广州: 中山大学, 2012: 15-30.]

    25. [25]

      (25) Yang, X.; Pan, Z. T.; Ma, Y. J. Analytical. Sci. 2003, 19 (6), 588. doi: 10.3969/j.issn.1006-6144.2003.06.028

    26. [26]

      (26) Paul, G. S.; Martin, G. J. Mol. Spectrosc. 1969, 3, 1. doi: 10.1016/0022-2852(69)90335-X

    27. [27]

      (27) You, L. L.; Shen, H.; Shi, L.; Zhang, G. L.; Liu, H. Y.; Wang, H.; Ji, L. N. Scientia Sinica chimica 2010, 40, 224. [游丽莉, 沈涵, 史蕾, 张国良, 刘海洋, 王惠, 计亮年. 中国科学, 2010, 40, 224.]

    28. [28]

      (28) Chen, P.; Ge, F. Y. Chemistry Online 2014, 77, 243. [陈鹏, 葛凤燕. 化学通报, 2014, 77, 243.] doi: 10.14159/j.cnki.0441-3776.2014.03.008

    29. [29]

      (29) Guo, C.; Feng, M. B. Chin. J. Lumin. 1987, 8 (2), 92. [郭础, 冯梅波. 发光学报, 1987, 8 (2), 92.]

    30. [30]

      (30) Shi, L.; Liu, H, Y.; Shen, H. J. Porphyr. Phthalocya. 2009, 13, 1221. doi: 10.1142/S1088424609001546

    31. [31]

      (31) Ghosh, M.; Mora, A. K.; Sukhendu, N, P.; Kumar, P. H.; Bangal, P. R.; Sinha, S. J. Photochem. Photobiol. A 2015, 306, 55. doi: 10.1016/j.jphotochem.2015.03.019

    32. [32]

      (32) Hayes, R, T.; Walsh, C, J.; Wasielewski, M, R. J. Phys. Chem. A 2004, 108, 2375. doi: 10.1021/jp037176i

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    12. [12]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    15. [15]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

Metrics
  • PDF Downloads(0)
  • Abstract views(377)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return