Citation: JIANG Tao, WANG Ning, CHENG Chang-Ming, PENG Shu-Ming, YAN Liu-Ming. Molecular Dynamics Simulation on the Structure and Thermodynamics of Molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 647-655. doi: 10.3866/PKU.WHXB201601042 shu

Molecular Dynamics Simulation on the Structure and Thermodynamics of Molten LiCl-KCl-CeCl3

  • Corresponding author: PENG Shu-Ming, 
  • Received Date: 28 October 2015
    Available Online: 31 December 2015

    Fund Project: 国家自然科学基金重大研究计划-集成项目(91426302) (91426302)国家自然科学基金(21301163)资助 (21301163)

  • The structure and thermodynamics of CeCl3 in molten LiCl-KCl-CeCl3 mixtures were studied by molecular dynamics simulation. The relationship formulas of temperature and density, and composition and density were obtained. The first peak for the gCe-Cl(r) radial distribution function was located at 0.259 nm and the corresponding first coordination number of Ce3+ was ~6.9. This inconsistency between molecular dynamics and experimental data could be attributed to the fact that our values were obtained for molten LiCl-KCl-CeCl3 mixtures, in which the interaction between Ce3+ and Cl- was more powerful than that in pure molten CeCl3. Regarding self-diffusion coefficients, the activation energy of Ce3+ was 22.5 kJ·mol-1, which is smaller than that of U3+ (25.8 kJ·mol-1). Furthermore, the pre-exponential factors for Ce3+ decreased from 31.9×10-5 to 21.8×10-5 cm2·s-1 as the molar fraction of Ce3+ increased from 0.005 to 0.05. This means that in the unit volume (ignoring the change of total volume), the diffusion resistance of Ce3+ increased, and the self-diffusion ability decreased, which resulted in a decrease of pre-exponential factors.
  • 加载中
    1. [1]

      (1) Fukasawa, K.; Uehara, A.; Nagai, T.; Sato, N.; Fujii, T.; Yamana, H. J. Nucl. Mater. 2012, 424 (1-3), 17. doi: 10.1016/j.jnucmat.2012.01.009

    2. [2]

      (2) Salanne, M.; Simon, C.; Turq, P.; Madden, P. A. J. Phys. Chem. B 2008, 112 (4), 1177. doi: 10.1021/jp075299n

    3. [3]

      (3) Ghosh, S.; Reddy, B. P.; Nagarajan, K.; Kumar, K. C. H.Calphad 2014, 45, 11. doi: 10.1016/j.calphad.2013.11.001

    4. [4]

      (4) Roy, J. J.; Grantham, L. F.; Grimmett, D. L.; Fusselman, S. P.; Krueger, C. L.; Storvick, T. S.; Inoue, T.; Sakamura, Y.; Takahashi, N. J. Electrochem. Soc. 1996, 143 (8), 2487. doi: 10.1149/1.1837035

    5. [5]

      (5) Sangster, M. J. L.; Dixon, M. Adv. Phys. 1976, 25 (3), 247. doi: 10.1080/00018737600101392

    6. [6]

      (6) Okamoto, Y.; Madden, P. A.; Minato, K. J. Nucl. Mater. 2005, 344 (1-3), 109. doi: 10.1016/j.jnucmat.2005.04.026

    7. [7]

      (7) Okamoto, Y.; Kobayashi, F.; Ogawa, T. J. Alloy. Compd. 1998, 271-273, 355. doi: 10.1016/S0925-8388(98)00087-5

    8. [8]

      (8) Okamoto, Y.; Madden, P. A. J. Phys. Chem. Solids 2005, 66(2-4), 448. doi: 10.1016/j.jpcs.2004.06.038

    9. [9]

      (9) Okamoto, Y.; Hayashi, H.; Ogawa, T. J. Nucl. Mater. 1997, 247, 86. doi: 10.1016/S0022-3115(97)00094-9

    10. [10]

      (10) Abramo, M. C.; Caccamo, C. Journal of Physics: Condensed Matter 1994, 6 (24), 4405. doi: 10.1088/0953-8984/6/24/003

    11. [11]

      (11) Ribeiro, M. C. C. The Journal of Physical Chemistry B 2003, 107 (18), 4392. doi: 10.1021/jp027261a

    12. [12]

      (12) Chakraborty, B.; Wang, J.; Eapen, J. Phys. Rev. E 2013, 87, 052312. doi: 10.1103/PhysRevE.87.052312

    13. [13]

      (13) Morgan, B.; Madden, P. A. J. Chem. Phys. 2004, 120 (3), 1402. doi: 10.1063/1.1629076

    14. [14]

      (14) Lantelme, F.; Turq, P. J. Chem. Phys. 1982, 77 (6), 3177. doi: 10.1063/1.444192

    15. [15]

      (15) Okamoto, Y.; Yaita, T.; Shiwaku, H.; Suzuki, S.; Madden, P.A.; Usami, N.; Kobayashi, K. Photon Factory Activity Report 2005 #23 Part B: Chemistry 2006, 27B/2004G064, 13. doi: pfwww.kek.jp/acr2005pdf/part_b.html

    16. [16]

      (16) Yan, L. M.; Zhu, S. H. Theory and Practice of Molecular Dynamic Simulation; Science Press: Beijing, 2013.

    17. [17]

      (17) Hutchinson, F.; Wilson, M.; Madden, P. A. Mol. Phys. 2001, 99(10), 811. doi: 10.1080/00268970010022878

    18. [18]

      (18) Salanne, M.; Madden, P. A. Mol. Phys. 2011, 109 (19), 2299. doi: 10.1039/C1FD00053E

    19. [19]

      (19) Rollet, A. L.; Salanne, M. Annual Reports SectionC(Physical Chemistry) 2011, 107, 88. doi: 10.1039/C1PC90003J

    20. [20]

      (20) Larsen, B.; Førland, T.; Singer, K. Mol. Phys. 1973, 26 (6), 1521. doi: 10.1080/00268977300102671

    21. [21]

      (21) Smith, W.; Leslie, M.; Forester, T. R. Computer Code DL_Poly_2.14; CCLRC, Daresbury Laboratory: Daresbury, England; 2003.

    22. [22]

      (22) Nosé, S. J. Chem. Phys. 1984, 81 (1), 511. doi: 10.1063/1.447334

    23. [23]

      (23) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi: 10.1103/PhysRevA.31.1695

    24. [24]

      (24) Basin, A. S.; Kaplun, A. B.; Meshalkin, A. B.; Uvarov, N. F.Russ. J. Inorg. Chem. 2008, 53 (9), 1509. doi: 10.1134/S003602360809026X

    25. [25]

      (25) Van Artsdalen, E. R.; Yaffe, I. S. J. Phys. Chem. 1955, 59 (2), 118. doi: 10.1021/j150524a007

    26. [26]

      (26) Janz, G. J.; Allen, C. B.; Bansal, N. P.; Murphy, R. M.; Tomkins, R. P. T. Physical Properties Data CompilationsRelevant to Energy Storage. II. Molten Salts: Data on SingleAnd Multi-Component Salt Systems. 1979. p. Medium: X;Size: Page: 442.

    27. [27]

      (27) Jiang, T.; Wang, N.; Peng, S.; Yan, L. Chem. Res. Chin. Univ.2015, 31 (2), 281. doi: 10.1007/s40242-015-4331-z

    28. [28]

      (28) Matsuura, H.; Watanabe, S.; Sakamoto, T.; Naoi, K.; Kitamura, N.; Akatsuka, H.; Adya, A. K.; Honma, T. J. Alloy. Compd.2006, 408-412, 80. doi: 10.1016/j.jallcom.2005.04.157

    29. [29]

      (29) Mariani, R. D.; Vaden, D. J. Nucl. Mater. 2010, 404 (1), 25. doi: 10.1016/j.jnucmat.2010.06.022

    30. [30]

      (30) Janz, G. J. Molten Salts Handbook; Academic Press: NewYork, San Francisco, London, 1967.

    31. [31]

      (31) Scridharan, K.; Allen, T.; Anderson, M.; Simpson, M. Thermal Propertities of LiCl-KCl Molten Salt for Nuclear Waste Separtion, in NEUP Final Report; University ofWisconsin-Madison: New York, San Francisco, London, 2012.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

Metrics
  • PDF Downloads(0)
  • Abstract views(386)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return