Citation: ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 701-710. doi: 10.3866/PKU.WHXB201512303 shu

Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel

  • Corresponding author: ZHANG Tian-Lei,  WANG Wen-Liang, 
  • Received Date: 20 November 2015
    Available Online: 28 December 2015

    Fund Project: 国家自然科学基金(21473108,21207081) (21473108,21207081)陕西理工学院科研计划项目(SLGQD13(2)-3,SLGQD13(2)-4)资助 (SLGQD13(2)-3,SLGQD13(2)-4)

  • The mechanism for the biradical reaction of HS with HO2 is investigated at the CCSD(T)/6-311++ G(3df,2pd)//B3LYP/6-311+G(2df,2p) level on both the singlet and triplet potential energy surfaces, along with rate constant calculations of the major channel. The results show that there are eight reaction channels involved in the HS + HO2 reaction system. The major channel R1 of the title reaction occurs on the triplet potential energy surfaces, and includes two pathways: Path 1 (R → 3IM1 → 3TS1 → P1(3O2 + H2S)) and Path 1a (R → 3IM1a → 3TS1a → P1(3O2 + H2S)). The rate constants kTST, kCVT, and kCVT/SCT of Paths 1 and 1a for Channel R1 were evaluated using classical transition state theory (TST) and the canonical variational transition state theory (CVT), in which the small-curvature tunneling correction was included. The calculated results show that kTST, kCVT, and kCVT/SCT of these two pathways decrease with rising temperature within the temperature range of 200-800 K. The variational effect was not negligible in the entire process of Path 1 and Path 1a, at the same time, the tunneling effect was considerable at lower temperature. The fitted three-parameter expressions of kCVT/SCT for Paths 1 and 1a are k1CVT/SCT(200-800 K) = 1.54×10-5T-2.70exp(1154/T) cm3·molecule-1·s-1 and k1aCVT/SCT (200-800 K) = 5.82×10-8T-1.84exp(1388/T) cm3·molecule-1·s-1, respectively.
  • 加载中
    1. [1]

      (1) Farquhar, J.; Bao, H.; Thiemens, M. Science 2000, 289 (5184), 756. doi: 10.1126/science.289.5480.756

    2. [2]

      (2) Martínez, E.; Albaladejo, J.; Notario, A.; Jiménez, E. Atmos. Environ. 2000, 34 (29), 5295. doi: 10.1016/S1352-2310(00)00348-4

    3. [3]

      (3) Vandeputte, A. G.; Reyniers, M. F.; Marin, G. B. J. Phys. Chem. A 2010, 114 (39), 10531. doi: 10.1021/jp103357z

    4. [4]

      (4) Williams, M. B.; Campuzano-Jost, P.; Hynes, A. J.; Pounds, A.J. J. Phys. Chem. A 2009, 113 (24), 6697. doi: 10.1021/jp9010668

    5. [5]

      (5) Wang, W.; Xin, J.; Zhang, Y.; Wang, W.; Lu, Y. Int. J. Quantum Chem. 2011, 111 (3), 644. doi: 10.1002/qua.22446

    6. [6]

      (6) Yan, J.; Yang, J.; Liu, Z. Environ. Sci. Technol. 2005, 39 (13), 5043. doi: 10.1021/es048398c

    7. [7]

      (7) Resende, S. M.; Ornellas, F. R. J. Phys. Chem. A 2000, 104(51), 11934. doi: 10.1021/jp001751q

    8. [8]

      (8) Black, G. J. Chem. Phys. 1984, 80 (3), 1103. doi: 10.1063/1.446838

    9. [9]

      (9) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem. Phys. 2004, 4 (6), 1461. doi: 10.5194/acp-4-1461-2004

    10. [10]

      (10) Herndon, S. C.; Froyd, K. D.; Lovejoy, E. R.; Ravishankara, A.R. J. Phys. Chem. A 1999, 103 (34), 6778. doi: 10.1021/jp9911853

    11. [11]

      (11) Friedl, R. R.; Brune, W. H.; Anderson, J. G. J. Phys. Chem.1985, 89 (25), 5505. doi: 10.1021/j100271a038

    12. [12]

      (12) Nesbitt, D. J.; Leone, S. R. J. Chem. Phys. 1980, 72 (3), 1722. doi: 10.1063/1.439284

    13. [13]

      (13) Domagal-Goldman, S. D.; Meadows, V. S.; Claire, M.W.Astrobiology 2011, 11 (5), 419. doi: 10.1089/ast.2010.0509

    14. [14]

      (14) Shum, L. G. S.; Benson, S.W. Int. J. Chem. Kinet. 1985, 17(7), 749. doi: 10.1002/kin. 550170705

    15. [15]

      (15) Imai, N.; Toyama, O. Bull. Chem. Soc. Jpn. 1961, 34 (3), 328. doi: 10.1246/bcsj.34.328

    16. [16]

      (16) Amphlett, J. C.; Whittle, E. Trans. Faraday Soc. 1967, 63, 2695. doi: 10.1039/TF9676302695

    17. [17]

      (17) Perner, V. D.; Franken, T. Ber. Bunsenges. Phys. Chem. 1969, 73 (8-9), 897. doi: 10.1002/bbpc. 19690730830

    18. [18]

      (18) Long, B.; Zhang, W. J.; Tan, X. F.; Long, Z.W.; Wang, Y. B.; Ren, D. S. J. Phys. Chem. A 2011, 115 (8), 1350. doi: 10.1021/jp107550w

    19. [19]

      (19) Allodi, M. A.; Dunn, M. E.; Livada, J.; Kirschner, K. N.; Shields, G. C. J. Phys. Chem. A 2006, 110 (49), 13283. doi: 10.1021/jp064468l

    20. [20]

      (20) Zhou, Y. Z.; Zhang, S.W.; Li, Q. S. Chem. J. Chin. Univ. 2006, 27 (8), 1496. [周玉芝, 张绍文, 李前树. 高等学校化学学报, 2006, 27 (8), 1496.]

    21. [21]

      (21) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154. doi: 10.1063/1.456010

    22. [22]

      (22) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys.1984, 81 (12), 5906. doi: 10.1063/1.447591

    23. [23]

      (23) Liu, Z. R.; Xu, B. E.; Zeng, Y. L.; Li, X. Y.; Meng, L. P.; Sun, Z.; Zhang, X. Y.; Zhang, P. Acta Chim. Sin. 2011, 69 (17), 1957. [刘占荣, 许保恩, 曾艳丽, 李晓艳, 孟令鹏, 孙政, 张雪英, 张萍. 化学学报, 2011, 69 (17), 1957.]

    24. [24]

      (24) Xu, Q.; Wang, R.; Zhang, T. L.; Zhang, H. L.; Wang, Z. Y.; Wang, Z. Q. Chem. J. Chin. Univ. 2014, 35 (10), 2191. [许琼, 王睿, 张田雷, 张浩林, 王志银, 王竹青. 高等学校化学学报, 2014, 35 (10), 2191.] doi: 10.7503/cjcu20140310

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.

    26. [26]

      (26) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University ofUtah, Salt Lake City, USA, 2001.

    27. [27]

      (27) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W.J. Phys. Chem. 1980, 84 (13), 1730. doi: 10.1021/j100450a013

    28. [28]

      (28) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D.G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115 (6), 2408. doi: 10.1021/ja00059a041

    29. [29]

      (29) Anglada, J. M.; Domingo, V. M. J. Phys. Chem. A 2005, 109(47), 10786. doi: 10.1021/ jp054018d

    30. [30]

      (30) Si, W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19(10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19(10), 974.] doi: 10.3866/PKU.WHXB20031019

    31. [31]

      (31) From the NIST chemistry webbook, http://webbook.nist.gov/chemistry.

    32. [32]

      (32) Gonzalez, C.; Theisen, J.; Zhu, L.; Schlegel, H. B.; Hase, W.L.; Kaiser, E.W. J. Phys. Chem. 1991, 95 (18), 6784. doi: 10.1021/j100171a010

    33. [33]

      (33) Gonzalez, C.; Theisen, J.; Schlegel, H. B.; HaseW. L.; Kaiser, E.W. J. Phys. Chem. 1992, 96 (4), 1767. doi: 10.1021/j100183a051

    34. [34]

      (34) Zhang, T. L.; Wang, W. L.; Li, C. Y.; Du, Y. M.; Lv, J. RSC Adv. 2013, 3 (20), 7381. doi: 10.1039/c3ra40341f

    35. [35]

      (35) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027

    36. [36]

      (36) Lu, Y. X.; Wang, W. L.; Wang, W. N.; Liu, Y. Y.; Zhang, Y.Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]

    37. [37]

      (37) Liu, Y.; Wang, W.; Zhang, T.; Cao, J.; Wang, W.; Zhang, Y.Comput. Theor. Chem. 2011, 964 (1), 169. doi: 10.1016/j.comptc.2010.12.017

    38. [38]

      (38) Zhang, Y.; Zhang, W.; Zhang, T.; Tian, W.; Wang, W. Comput. Theor. Chem. 2012, 994, 65. doi: 10.1016/j.comptc.2012.06.016

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(570)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return