Citation:
ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinica,
;2016, 32(3): 701-710.
doi:
10.3866/PKU.WHXB201512303
-
The mechanism for the biradical reaction of HS with HO2 is investigated at the CCSD(T)/6-311++ G(3df,2pd)//B3LYP/6-311+G(2df,2p) level on both the singlet and triplet potential energy surfaces, along with rate constant calculations of the major channel. The results show that there are eight reaction channels involved in the HS + HO2 reaction system. The major channel R1 of the title reaction occurs on the triplet potential energy surfaces, and includes two pathways: Path 1 (R → 3IM1 → 3TS1 → P1(3O2 + H2S)) and Path 1a (R → 3IM1a → 3TS1a → P1(3O2 + H2S)). The rate constants kTST, kCVT, and kCVT/SCT of Paths 1 and 1a for Channel R1 were evaluated using classical transition state theory (TST) and the canonical variational transition state theory (CVT), in which the small-curvature tunneling correction was included. The calculated results show that kTST, kCVT, and kCVT/SCT of these two pathways decrease with rising temperature within the temperature range of 200-800 K. The variational effect was not negligible in the entire process of Path 1 and Path 1a, at the same time, the tunneling effect was considerable at lower temperature. The fitted three-parameter expressions of kCVT/SCT for Paths 1 and 1a are k1CVT/SCT(200-800 K) = 1.54×10-5T-2.70exp(1154/T) cm3·molecule-1·s-1 and k1aCVT/SCT (200-800 K) = 5.82×10-8T-1.84exp(1388/T) cm3·molecule-1·s-1, respectively.
-
Keywords:
- HS,
- HO2,
- Potential energy surface,
- Reaction mechanism,
- Rate constant
-
-
-
[1]
(1) Farquhar, J.; Bao, H.; Thiemens, M. Science 2000, 289 (5184), 756. doi: 10.1126/science.289.5480.756
-
[2]
(2) Martínez, E.; Albaladejo, J.; Notario, A.; Jiménez, E. Atmos. Environ. 2000, 34 (29), 5295. doi: 10.1016/S1352-2310(00)00348-4
-
[3]
(3) Vandeputte, A. G.; Reyniers, M. F.; Marin, G. B. J. Phys. Chem. A 2010, 114 (39), 10531. doi: 10.1021/jp103357z
-
[4]
(4) Williams, M. B.; Campuzano-Jost, P.; Hynes, A. J.; Pounds, A.J. J. Phys. Chem. A 2009, 113 (24), 6697. doi: 10.1021/jp9010668
-
[5]
(5) Wang, W.; Xin, J.; Zhang, Y.; Wang, W.; Lu, Y. Int. J. Quantum Chem. 2011, 111 (3), 644. doi: 10.1002/qua.22446
-
[6]
(6) Yan, J.; Yang, J.; Liu, Z. Environ. Sci. Technol. 2005, 39 (13), 5043. doi: 10.1021/es048398c
-
[7]
(7) Resende, S. M.; Ornellas, F. R. J. Phys. Chem. A 2000, 104(51), 11934. doi: 10.1021/jp001751q
-
[8]
(8) Black, G. J. Chem. Phys. 1984, 80 (3), 1103. doi: 10.1063/1.446838
-
[9]
(9) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem. Phys. 2004, 4 (6), 1461. doi: 10.5194/acp-4-1461-2004
-
[10]
(10) Herndon, S. C.; Froyd, K. D.; Lovejoy, E. R.; Ravishankara, A.R. J. Phys. Chem. A 1999, 103 (34), 6778. doi: 10.1021/jp9911853
-
[11]
(11) Friedl, R. R.; Brune, W. H.; Anderson, J. G. J. Phys. Chem.1985, 89 (25), 5505. doi: 10.1021/j100271a038
-
[12]
(12) Nesbitt, D. J.; Leone, S. R. J. Chem. Phys. 1980, 72 (3), 1722. doi: 10.1063/1.439284
-
[13]
(13) Domagal-Goldman, S. D.; Meadows, V. S.; Claire, M.W.Astrobiology 2011, 11 (5), 419. doi: 10.1089/ast.2010.0509
-
[14]
(14) Shum, L. G. S.; Benson, S.W. Int. J. Chem. Kinet. 1985, 17(7), 749. doi: 10.1002/kin. 550170705
-
[15]
(15) Imai, N.; Toyama, O. Bull. Chem. Soc. Jpn. 1961, 34 (3), 328. doi: 10.1246/bcsj.34.328
-
[16]
(16) Amphlett, J. C.; Whittle, E. Trans. Faraday Soc. 1967, 63, 2695. doi: 10.1039/TF9676302695
-
[17]
(17) Perner, V. D.; Franken, T. Ber. Bunsenges. Phys. Chem. 1969, 73 (8-9), 897. doi: 10.1002/bbpc. 19690730830
-
[18]
(18) Long, B.; Zhang, W. J.; Tan, X. F.; Long, Z.W.; Wang, Y. B.; Ren, D. S. J. Phys. Chem. A 2011, 115 (8), 1350. doi: 10.1021/jp107550w
-
[19]
(19) Allodi, M. A.; Dunn, M. E.; Livada, J.; Kirschner, K. N.; Shields, G. C. J. Phys. Chem. A 2006, 110 (49), 13283. doi: 10.1021/jp064468l
-
[20]
(20) Zhou, Y. Z.; Zhang, S.W.; Li, Q. S. Chem. J. Chin. Univ. 2006, 27 (8), 1496. [周玉芝, 张绍文, 李前树. 高等学校化学学报, 2006, 27 (8), 1496.]
-
[21]
(21) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154. doi: 10.1063/1.456010
-
[22]
(22) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys.1984, 81 (12), 5906. doi: 10.1063/1.447591
-
[23]
(23) Liu, Z. R.; Xu, B. E.; Zeng, Y. L.; Li, X. Y.; Meng, L. P.; Sun, Z.; Zhang, X. Y.; Zhang, P. Acta Chim. Sin. 2011, 69 (17), 1957. [刘占荣, 许保恩, 曾艳丽, 李晓艳, 孟令鹏, 孙政, 张雪英, 张萍. 化学学报, 2011, 69 (17), 1957.]
-
[24]
(24) Xu, Q.; Wang, R.; Zhang, T. L.; Zhang, H. L.; Wang, Z. Y.; Wang, Z. Q. Chem. J. Chin. Univ. 2014, 35 (10), 2191. [许琼, 王睿, 张田雷, 张浩林, 王志银, 王竹青. 高等学校化学学报, 2014, 35 (10), 2191.] doi: 10.7503/cjcu20140310
-
[25]
(25) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.
-
[26]
(26) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University ofUtah, Salt Lake City, USA, 2001.
-
[27]
(27) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W.J. Phys. Chem. 1980, 84 (13), 1730. doi: 10.1021/j100450a013
-
[28]
(28) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D.G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115 (6), 2408. doi: 10.1021/ja00059a041
-
[29]
(29) Anglada, J. M.; Domingo, V. M. J. Phys. Chem. A 2005, 109(47), 10786. doi: 10.1021/ jp054018d
-
[30]
(30) Si, W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19(10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19(10), 974.] doi: 10.3866/PKU.WHXB20031019
-
[31]
(31) From the NIST chemistry webbook, http://webbook.nist.gov/chemistry.
-
[32]
(32) Gonzalez, C.; Theisen, J.; Zhu, L.; Schlegel, H. B.; Hase, W.L.; Kaiser, E.W. J. Phys. Chem. 1991, 95 (18), 6784. doi: 10.1021/j100171a010
-
[33]
(33) Gonzalez, C.; Theisen, J.; Schlegel, H. B.; HaseW. L.; Kaiser, E.W. J. Phys. Chem. 1992, 96 (4), 1767. doi: 10.1021/j100183a051
-
[34]
(34) Zhang, T. L.; Wang, W. L.; Li, C. Y.; Du, Y. M.; Lv, J. RSC Adv. 2013, 3 (20), 7381. doi: 10.1039/c3ra40341f
-
[35]
(35) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027
-
[36]
(36) Lu, Y. X.; Wang, W. L.; Wang, W. N.; Liu, Y. Y.; Zhang, Y.Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]
-
[37]
(37) Liu, Y.; Wang, W.; Zhang, T.; Cao, J.; Wang, W.; Zhang, Y.Comput. Theor. Chem. 2011, 964 (1), 169. doi: 10.1016/j.comptc.2010.12.017
-
[38]
(38) Zhang, Y.; Zhang, W.; Zhang, T.; Tian, W.; Wang, W. Comput. Theor. Chem. 2012, 994, 65. doi: 10.1016/j.comptc.2012.06.016
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[7]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[8]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[9]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[10]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[11]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[12]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[13]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[14]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[15]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[17]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[18]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[19]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[20]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(570)
- HTML views(35)