Citation: ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 701-710. doi: 10.3866/PKU.WHXB201512303
-
The mechanism for the biradical reaction of HS with HO2 is investigated at the CCSD(T)/6-311++ G(3df,2pd)//B3LYP/6-311+G(2df,2p) level on both the singlet and triplet potential energy surfaces, along with rate constant calculations of the major channel. The results show that there are eight reaction channels involved in the HS + HO2 reaction system. The major channel R1 of the title reaction occurs on the triplet potential energy surfaces, and includes two pathways: Path 1 (R → 3IM1 → 3TS1 → P1(3O2 + H2S)) and Path 1a (R → 3IM1a → 3TS1a → P1(3O2 + H2S)). The rate constants kTST, kCVT, and kCVT/SCT of Paths 1 and 1a for Channel R1 were evaluated using classical transition state theory (TST) and the canonical variational transition state theory (CVT), in which the small-curvature tunneling correction was included. The calculated results show that kTST, kCVT, and kCVT/SCT of these two pathways decrease with rising temperature within the temperature range of 200-800 K. The variational effect was not negligible in the entire process of Path 1 and Path 1a, at the same time, the tunneling effect was considerable at lower temperature. The fitted three-parameter expressions of kCVT/SCT for Paths 1 and 1a are k1CVT/SCT(200-800 K) = 1.54×10-5T-2.70exp(1154/T) cm3·molecule-1·s-1 and k1aCVT/SCT (200-800 K) = 5.82×10-8T-1.84exp(1388/T) cm3·molecule-1·s-1, respectively.
-
Keywords:
- HS,
- HO2,
- Potential energy surface,
- Reaction mechanism,
- Rate constant
-
-
[1]
(1) Farquhar, J.; Bao, H.; Thiemens, M. Science 2000, 289 (5184), 756. doi: 10.1126/science.289.5480.756
-
[2]
(2) Martínez, E.; Albaladejo, J.; Notario, A.; Jiménez, E. Atmos. Environ. 2000, 34 (29), 5295. doi: 10.1016/S1352-2310(00)00348-4
-
[3]
(3) Vandeputte, A. G.; Reyniers, M. F.; Marin, G. B. J. Phys. Chem. A 2010, 114 (39), 10531. doi: 10.1021/jp103357z
-
[4]
(4) Williams, M. B.; Campuzano-Jost, P.; Hynes, A. J.; Pounds, A.J. J. Phys. Chem. A 2009, 113 (24), 6697. doi: 10.1021/jp9010668
-
[5]
(5) Wang, W.; Xin, J.; Zhang, Y.; Wang, W.; Lu, Y. Int. J. Quantum Chem. 2011, 111 (3), 644. doi: 10.1002/qua.22446
-
[6]
(6) Yan, J.; Yang, J.; Liu, Z. Environ. Sci. Technol. 2005, 39 (13), 5043. doi: 10.1021/es048398c
-
[7]
(7) Resende, S. M.; Ornellas, F. R. J. Phys. Chem. A 2000, 104(51), 11934. doi: 10.1021/jp001751q
-
[8]
(8) Black, G. J. Chem. Phys. 1984, 80 (3), 1103. doi: 10.1063/1.446838
-
[9]
(9) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem. Phys. 2004, 4 (6), 1461. doi: 10.5194/acp-4-1461-2004
-
[10]
(10) Herndon, S. C.; Froyd, K. D.; Lovejoy, E. R.; Ravishankara, A.R. J. Phys. Chem. A 1999, 103 (34), 6778. doi: 10.1021/jp9911853
-
[11]
(11) Friedl, R. R.; Brune, W. H.; Anderson, J. G. J. Phys. Chem.1985, 89 (25), 5505. doi: 10.1021/j100271a038
-
[12]
(12) Nesbitt, D. J.; Leone, S. R. J. Chem. Phys. 1980, 72 (3), 1722. doi: 10.1063/1.439284
-
[13]
(13) Domagal-Goldman, S. D.; Meadows, V. S.; Claire, M.W.Astrobiology 2011, 11 (5), 419. doi: 10.1089/ast.2010.0509
-
[14]
(14) Shum, L. G. S.; Benson, S.W. Int. J. Chem. Kinet. 1985, 17(7), 749. doi: 10.1002/kin. 550170705
-
[15]
(15) Imai, N.; Toyama, O. Bull. Chem. Soc. Jpn. 1961, 34 (3), 328. doi: 10.1246/bcsj.34.328
-
[16]
(16) Amphlett, J. C.; Whittle, E. Trans. Faraday Soc. 1967, 63, 2695. doi: 10.1039/TF9676302695
-
[17]
(17) Perner, V. D.; Franken, T. Ber. Bunsenges. Phys. Chem. 1969, 73 (8-9), 897. doi: 10.1002/bbpc. 19690730830
-
[18]
(18) Long, B.; Zhang, W. J.; Tan, X. F.; Long, Z.W.; Wang, Y. B.; Ren, D. S. J. Phys. Chem. A 2011, 115 (8), 1350. doi: 10.1021/jp107550w
-
[19]
(19) Allodi, M. A.; Dunn, M. E.; Livada, J.; Kirschner, K. N.; Shields, G. C. J. Phys. Chem. A 2006, 110 (49), 13283. doi: 10.1021/jp064468l
-
[20]
(20) Zhou, Y. Z.; Zhang, S.W.; Li, Q. S. Chem. J. Chin. Univ. 2006, 27 (8), 1496. [周玉芝, 张绍文, 李前树. 高等学校化学学报, 2006, 27 (8), 1496.]
-
[21]
(21) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154. doi: 10.1063/1.456010
-
[22]
(22) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys.1984, 81 (12), 5906. doi: 10.1063/1.447591
-
[23]
(23) Liu, Z. R.; Xu, B. E.; Zeng, Y. L.; Li, X. Y.; Meng, L. P.; Sun, Z.; Zhang, X. Y.; Zhang, P. Acta Chim. Sin. 2011, 69 (17), 1957. [刘占荣, 许保恩, 曾艳丽, 李晓艳, 孟令鹏, 孙政, 张雪英, 张萍. 化学学报, 2011, 69 (17), 1957.]
-
[24]
(24) Xu, Q.; Wang, R.; Zhang, T. L.; Zhang, H. L.; Wang, Z. Y.; Wang, Z. Q. Chem. J. Chin. Univ. 2014, 35 (10), 2191. [许琼, 王睿, 张田雷, 张浩林, 王志银, 王竹青. 高等学校化学学报, 2014, 35 (10), 2191.] doi: 10.7503/cjcu20140310
-
[25]
(25) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.
-
[26]
(26) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University ofUtah, Salt Lake City, USA, 2001.
-
[27]
(27) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W.J. Phys. Chem. 1980, 84 (13), 1730. doi: 10.1021/j100450a013
-
[28]
(28) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D.G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115 (6), 2408. doi: 10.1021/ja00059a041
-
[29]
(29) Anglada, J. M.; Domingo, V. M. J. Phys. Chem. A 2005, 109(47), 10786. doi: 10.1021/ jp054018d
-
[30]
(30) Si, W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19(10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19(10), 974.] doi: 10.3866/PKU.WHXB20031019
-
[31]
(31) From the NIST chemistry webbook, http://webbook.nist.gov/chemistry.
-
[32]
(32) Gonzalez, C.; Theisen, J.; Zhu, L.; Schlegel, H. B.; Hase, W.L.; Kaiser, E.W. J. Phys. Chem. 1991, 95 (18), 6784. doi: 10.1021/j100171a010
-
[33]
(33) Gonzalez, C.; Theisen, J.; Schlegel, H. B.; HaseW. L.; Kaiser, E.W. J. Phys. Chem. 1992, 96 (4), 1767. doi: 10.1021/j100183a051
-
[34]
(34) Zhang, T. L.; Wang, W. L.; Li, C. Y.; Du, Y. M.; Lv, J. RSC Adv. 2013, 3 (20), 7381. doi: 10.1039/c3ra40341f
-
[35]
(35) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027
-
[36]
(36) Lu, Y. X.; Wang, W. L.; Wang, W. N.; Liu, Y. Y.; Zhang, Y.Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]
-
[37]
(37) Liu, Y.; Wang, W.; Zhang, T.; Cao, J.; Wang, W.; Zhang, Y.Comput. Theor. Chem. 2011, 964 (1), 169. doi: 10.1016/j.comptc.2010.12.017
-
[38]
(38) Zhang, Y.; Zhang, W.; Zhang, T.; Tian, W.; Wang, W. Comput. Theor. Chem. 2012, 994, 65. doi: 10.1016/j.comptc.2012.06.016
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[4]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[5]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[6]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[7]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[8]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[11]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[12]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[13]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[14]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[15]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[18]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[19]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[20]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(490)
- HTML views(25)