Citation: ZHANG Tian-Lei, YANG Chen, FENG Xu-Kai, WANG Zhu-Qing, WANG Rui, LIU Qiu-Li, ZHANG Peng, WANG Wen-Liang. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 701-710. doi: 10.3866/PKU.WHXB201512303 shu

Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel

  • Corresponding author: ZHANG Tian-Lei,  WANG Wen-Liang, 
  • Received Date: 20 November 2015
    Available Online: 28 December 2015

    Fund Project: 国家自然科学基金(21473108,21207081) (21473108,21207081)陕西理工学院科研计划项目(SLGQD13(2)-3,SLGQD13(2)-4)资助 (SLGQD13(2)-3,SLGQD13(2)-4)

  • The mechanism for the biradical reaction of HS with HO2 is investigated at the CCSD(T)/6-311++ G(3df,2pd)//B3LYP/6-311+G(2df,2p) level on both the singlet and triplet potential energy surfaces, along with rate constant calculations of the major channel. The results show that there are eight reaction channels involved in the HS + HO2 reaction system. The major channel R1 of the title reaction occurs on the triplet potential energy surfaces, and includes two pathways: Path 1 (R → 3IM1 → 3TS1 → P1(3O2 + H2S)) and Path 1a (R → 3IM1a → 3TS1a → P1(3O2 + H2S)). The rate constants kTST, kCVT, and kCVT/SCT of Paths 1 and 1a for Channel R1 were evaluated using classical transition state theory (TST) and the canonical variational transition state theory (CVT), in which the small-curvature tunneling correction was included. The calculated results show that kTST, kCVT, and kCVT/SCT of these two pathways decrease with rising temperature within the temperature range of 200-800 K. The variational effect was not negligible in the entire process of Path 1 and Path 1a, at the same time, the tunneling effect was considerable at lower temperature. The fitted three-parameter expressions of kCVT/SCT for Paths 1 and 1a are k1CVT/SCT(200-800 K) = 1.54×10-5T-2.70exp(1154/T) cm3·molecule-1·s-1 and k1aCVT/SCT (200-800 K) = 5.82×10-8T-1.84exp(1388/T) cm3·molecule-1·s-1, respectively.
  • 加载中
    1. [1]

      (1) Farquhar, J.; Bao, H.; Thiemens, M. Science 2000, 289 (5184), 756. doi: 10.1126/science.289.5480.756

    2. [2]

      (2) Martínez, E.; Albaladejo, J.; Notario, A.; Jiménez, E. Atmos. Environ. 2000, 34 (29), 5295. doi: 10.1016/S1352-2310(00)00348-4

    3. [3]

      (3) Vandeputte, A. G.; Reyniers, M. F.; Marin, G. B. J. Phys. Chem. A 2010, 114 (39), 10531. doi: 10.1021/jp103357z

    4. [4]

      (4) Williams, M. B.; Campuzano-Jost, P.; Hynes, A. J.; Pounds, A.J. J. Phys. Chem. A 2009, 113 (24), 6697. doi: 10.1021/jp9010668

    5. [5]

      (5) Wang, W.; Xin, J.; Zhang, Y.; Wang, W.; Lu, Y. Int. J. Quantum Chem. 2011, 111 (3), 644. doi: 10.1002/qua.22446

    6. [6]

      (6) Yan, J.; Yang, J.; Liu, Z. Environ. Sci. Technol. 2005, 39 (13), 5043. doi: 10.1021/es048398c

    7. [7]

      (7) Resende, S. M.; Ornellas, F. R. J. Phys. Chem. A 2000, 104(51), 11934. doi: 10.1021/jp001751q

    8. [8]

      (8) Black, G. J. Chem. Phys. 1984, 80 (3), 1103. doi: 10.1063/1.446838

    9. [9]

      (9) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem. Phys. 2004, 4 (6), 1461. doi: 10.5194/acp-4-1461-2004

    10. [10]

      (10) Herndon, S. C.; Froyd, K. D.; Lovejoy, E. R.; Ravishankara, A.R. J. Phys. Chem. A 1999, 103 (34), 6778. doi: 10.1021/jp9911853

    11. [11]

      (11) Friedl, R. R.; Brune, W. H.; Anderson, J. G. J. Phys. Chem.1985, 89 (25), 5505. doi: 10.1021/j100271a038

    12. [12]

      (12) Nesbitt, D. J.; Leone, S. R. J. Chem. Phys. 1980, 72 (3), 1722. doi: 10.1063/1.439284

    13. [13]

      (13) Domagal-Goldman, S. D.; Meadows, V. S.; Claire, M.W.Astrobiology 2011, 11 (5), 419. doi: 10.1089/ast.2010.0509

    14. [14]

      (14) Shum, L. G. S.; Benson, S.W. Int. J. Chem. Kinet. 1985, 17(7), 749. doi: 10.1002/kin. 550170705

    15. [15]

      (15) Imai, N.; Toyama, O. Bull. Chem. Soc. Jpn. 1961, 34 (3), 328. doi: 10.1246/bcsj.34.328

    16. [16]

      (16) Amphlett, J. C.; Whittle, E. Trans. Faraday Soc. 1967, 63, 2695. doi: 10.1039/TF9676302695

    17. [17]

      (17) Perner, V. D.; Franken, T. Ber. Bunsenges. Phys. Chem. 1969, 73 (8-9), 897. doi: 10.1002/bbpc. 19690730830

    18. [18]

      (18) Long, B.; Zhang, W. J.; Tan, X. F.; Long, Z.W.; Wang, Y. B.; Ren, D. S. J. Phys. Chem. A 2011, 115 (8), 1350. doi: 10.1021/jp107550w

    19. [19]

      (19) Allodi, M. A.; Dunn, M. E.; Livada, J.; Kirschner, K. N.; Shields, G. C. J. Phys. Chem. A 2006, 110 (49), 13283. doi: 10.1021/jp064468l

    20. [20]

      (20) Zhou, Y. Z.; Zhang, S.W.; Li, Q. S. Chem. J. Chin. Univ. 2006, 27 (8), 1496. [周玉芝, 张绍文, 李前树. 高等学校化学学报, 2006, 27 (8), 1496.]

    21. [21]

      (21) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154. doi: 10.1063/1.456010

    22. [22]

      (22) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys.1984, 81 (12), 5906. doi: 10.1063/1.447591

    23. [23]

      (23) Liu, Z. R.; Xu, B. E.; Zeng, Y. L.; Li, X. Y.; Meng, L. P.; Sun, Z.; Zhang, X. Y.; Zhang, P. Acta Chim. Sin. 2011, 69 (17), 1957. [刘占荣, 许保恩, 曾艳丽, 李晓艳, 孟令鹏, 孙政, 张雪英, 张萍. 化学学报, 2011, 69 (17), 1957.]

    24. [24]

      (24) Xu, Q.; Wang, R.; Zhang, T. L.; Zhang, H. L.; Wang, Z. Y.; Wang, Z. Q. Chem. J. Chin. Univ. 2014, 35 (10), 2191. [许琼, 王睿, 张田雷, 张浩林, 王志银, 王竹青. 高等学校化学学报, 2014, 35 (10), 2191.] doi: 10.7503/cjcu20140310

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.

    26. [26]

      (26) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University ofUtah, Salt Lake City, USA, 2001.

    27. [27]

      (27) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W.J. Phys. Chem. 1980, 84 (13), 1730. doi: 10.1021/j100450a013

    28. [28]

      (28) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D.G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115 (6), 2408. doi: 10.1021/ja00059a041

    29. [29]

      (29) Anglada, J. M.; Domingo, V. M. J. Phys. Chem. A 2005, 109(47), 10786. doi: 10.1021/ jp054018d

    30. [30]

      (30) Si, W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19(10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19(10), 974.] doi: 10.3866/PKU.WHXB20031019

    31. [31]

      (31) From the NIST chemistry webbook, http://webbook.nist.gov/chemistry.

    32. [32]

      (32) Gonzalez, C.; Theisen, J.; Zhu, L.; Schlegel, H. B.; Hase, W.L.; Kaiser, E.W. J. Phys. Chem. 1991, 95 (18), 6784. doi: 10.1021/j100171a010

    33. [33]

      (33) Gonzalez, C.; Theisen, J.; Schlegel, H. B.; HaseW. L.; Kaiser, E.W. J. Phys. Chem. 1992, 96 (4), 1767. doi: 10.1021/j100183a051

    34. [34]

      (34) Zhang, T. L.; Wang, W. L.; Li, C. Y.; Du, Y. M.; Lv, J. RSC Adv. 2013, 3 (20), 7381. doi: 10.1039/c3ra40341f

    35. [35]

      (35) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027

    36. [36]

      (36) Lu, Y. X.; Wang, W. L.; Wang, W. N.; Liu, Y. Y.; Zhang, Y.Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]

    37. [37]

      (37) Liu, Y.; Wang, W.; Zhang, T.; Cao, J.; Wang, W.; Zhang, Y.Comput. Theor. Chem. 2011, 964 (1), 169. doi: 10.1016/j.comptc.2010.12.017

    38. [38]

      (38) Zhang, Y.; Zhang, W.; Zhang, T.; Tian, W.; Wang, W. Comput. Theor. Chem. 2012, 994, 65. doi: 10.1016/j.comptc.2012.06.016

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(0)
  • Abstract views(490)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return