Citation: KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 717-722. doi: 10.3866/PKU.WHXB201512301
-
We synthesized layered lithium-rich cathode materials by a novel ethanol-based one-step oxalate coprecipitation method. Using this method, all the elements including lithium could be coprecipitated during the coprecipitation reaction process to realize a homogeneous mixture of lithium and transition metal elements. In addition, compared with the conventional ammonium oxalate coprecipitation method, the precursor preheating process was eliminated, which should decrease reaction time and cost. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements were used to investigate the differences in the crystal structure, morphology and electrochemical performance of samples synthesized using the above two methods. Compared with the samples synthesized by the conventional ammonium oxalate coprecipitation method, samples prepared by our novel one-step oxalate coprecipitation method exhibit higher crystallinity with larger interlayer spacing, and smaller, more homogeneous particles. Such crystal structure and morphology endow the samples prepared by the oxalate coprecipitation method with better discharge capacity, cycle performance and rate performance than those synthesized by the conventional method. The simple, efficient coprecipitation method developed here may provide a new approach to fabricate layered materials for highperformance lithium-ion batteries.
-
-
[1]
(1) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334 (18), 928. doi: 10.1126/science.1212741
-
[2]
(2) Chen, L.; Su, Y. F.; Chen, S.; Li, N.; Bao, L.Y.; Li, W. K.; Wang, Z.; Wang, M.; Wu, F. Adv. Mater. 2014, 26 (39), 6756. doi: 10.1002/adma.v26.39
-
[3]
(3) Lu, Z.; Beaulieu, L.; Donaberger, R.; Thomas, C.; Dahn, J.J. Electrochem. Soc. 2002, 149 (6), A778. doi: 10.1149/1.1471541
-
[4]
(4) Lu, Z.; MacNeil, D.; Dahn, J. Electrochem. Solid ST. 2001, 4(6), A191. doi: 10.1149/1.1407994
-
[5]
(5) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. J. Mater. Chem. 2007, 17 (30), 3112. doi: 10.1039/B702425H
-
[6]
(6) Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang, W.; Zhang, L. J.; An, R.; Chen, S. Adv. Mater. 2013, 25 (27), 3722. doi: 10.1002/adma.201300598
-
[7]
(7) Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Energ. Environ. Sci.2011, 4 (6), 2223. doi: 10.1039/c1ee01131f
-
[8]
(8) Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Electrochim. Acta 2004, 50, 939. doi: 10.1016/j.electacta.2004.07.038
-
[9]
(9) Van Bommel, A.; Dahn, J. Chem. Mater. 2009, 21 (8), 1500. doi: 10.1021/cm803144d
-
[10]
(10) Liang, L.; Du, K.; Peng, Z.; Cao, Y.; Duan, J.; Jiang, J.; Hu, G.Electrochim. Acta 2014, 130, 82. doi: 10.1016/j.electacta.2014.02.100
-
[11]
(11) Kim, H. J.; Jung, H. G.; Scrosati, B.; Sun, Y. K. J. Power Sources 2012, 203, 115. doi: 10.1016/j.jpowsour.2011.11.076
-
[12]
(12) Lim, J. H.; Bang, H.; Lee, K. S.; Amine, K.; Sun, Y. K.J. Power Sources 2009, 189, 571. doi: 10.1016/j.jpowsour.2008.10.035
-
[13]
(13) Zhou, F.; Zhao, X.; van Bommel, A.; Rowe, A.W.; Dahn, J.Chem. Mater. 2009, 22 (3), 1015. doi: 10.1021/cm9018309
-
[14]
(14) Wang, D.; Belharouak, I.; Koenig, G. M.; Zhou, G.; Amine, K.J. Mater. Chem. 2011, 21 (25), 9290. doi: 10.1039/c1jm11077b
-
[15]
(15) Zhang, S.; Deng, C.; Fu, B.; Yang, S.; Ma, L. Powder Technol.2010, 198 (3), 373. doi: 10.1016/j.powtec.2009.12.002
-
[16]
(16) Lee, D. K.; Park, S. H.; Amine, K.; Bang, H.; Parakash, J.; Sun, Y. K. J. Power Sources 2006, 162, 1346. doi: 10.1016/j. jpowsour.2006.07.064
-
[17]
(17) Zhang, S.; Deng, C.; Yang, S.; Niu, H. J. Alloy. Compd. 2009, 484 (1), 519. doi: 10.1016/j.jallcom.2009.04.149
-
[18]
(18) Park, S. H.; Kang, S. H.; Belharouak, I.; Sun, Y.; Amine, K.J. Power Sources 2008, 177, 177. doi: 10.1016/j.jpowsour.2007.10.062
-
[19]
(19) Zheng, J.; Gu, M.; Genc, A.; Xiao, J.; Xu, P.; Chen, X.; Zhu, Z.; Zhao, W.; Pullan, L.; Wang, C. Nano Lett. 2014, 14 (5), 2628. doi: 10.1021/nl500486y
-
[20]
(20) Wu, F.; Lu, H. Q.; Su, Y. F.; Li, N.; Bao, L. Y.; Chen, S.J. Appl. Electrochem. 2010, 40 (4), 783.
-
[21]
(21) Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. J. Mater. Chem. 2005, 15 (23), 2257. doi: 10.1039/b417616m
-
[22]
(22) Kim, J. H.; Park, C.; Sun, Y. K. Solid State Ionics 2003, 164(1), 43. doi: 10.1016/j.ssi.2003.08.003
-
[23]
(23) Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H. Electrochim. Acta 1993, 38, 1159. doi: 10.1016/0013-4686(93)80046-3
-
[24]
(24) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit. 2008, 47 (16), 2930. doi: 10.1002/anie.200702505
-
[25]
(25) Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S.J. Am. Chem. Soc. 2011, 133 (12), 4404. doi: 10.1021/ja108588y
-
[26]
(26) Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; Thackeray, M. M. Chem. Mater. 2008, 20 (19), 6095. doi: 10.1021/cm801245r
-
[27]
(27) Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J. Chem. Mater. 2013, 25 (11), 2319. doi: 10.1021/cm4009392
-
[28]
(28) Arunkumar, T.; Wu, Y.; Manthiram, A. Chem. Mater. 2007, 19(12), 3067. doi: 10.1021/cm070389q
-
[29]
(29) Kou, J.W.; Chen, L.; Su, Y. F.; Bao, L. Y.; Wang, J.; Li, N.; Li, W. K.; Wang, M.; Chen, S.; Wu, F. ACS Appl. Mater. Inter.2015, 7 (32), 17910. doi: 10.1021/acsami.5b04514
-
[30]
(30) Chen, L.; Chen, S.; Hu, D. Z.; Su, Y. F.; Li, W. K.; Wang, Z.; Bao, L. Y.; Wu, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 467.[陈来, 陈实, 胡道中, 苏岳锋, 李维康, 王昭, 包丽颖, 吴锋. 物理化学学报, 2014, 30 (3), 467.] doi: 10.3866/PKU.WHXB201312252
-
[31]
(31) Yu, H.; Wang, Y.; Asakura, D.; Hosono, E.; Zhang, T.; Zhou, H. S. RSC Adv. 2012, 2 (23), 8797. doi: 10.1039/c2ra20772a
-
[32]
(32) Liu, X.; Li, H.; Yoo, E.; Ishida, M.; Zhou, H. S. Electrochim. Acta 2012, 83, 253. doi: 10.1016/j.electacta.2012.07.111
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[10]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[13]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[14]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[17]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[20]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(529)
- HTML views(61)