Citation: KONG Ling-Ming, ZHU Bao-Lin, PANG Xian-Yong, WANG Gui-Chang. First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 656-664. doi: 10.3866/PKU.WHXB201512292 shu

First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries

  • Corresponding author: PANG Xian-Yong,  WANG Gui-Chang, 
  • Received Date: 24 September 2015
    Available Online: 29 December 2015

    Fund Project: 天津市重点自然科学基金(13JCZDJC26800) (13JCZDJC26800)煤转化国家重点实验室开放基金(J15-16-908)与山西省自然科学基金(2013011012-8)资助项目. (J15-16-908)与山西省自然科学基金(2013011012-8)

  • Density functional theory calculations were carried out on oxygen-deficient TiO2-B to evaluate the effect of oxygen vacancies on its electrochemical properties. The computational studies focused on the lithium (Li)-ion transport and electronic conductivity of this defect-containing material. Calculations on TiO2-B with low Li-ion concentration (x(Li/Ti) ⩽ 0.25) suggest that compared with defect-free TiO2-B, oxygen-deficient TiO2-B has a higher intercalation voltage and lower migration activation energy along the b-axis channel. This facilitates Li-ion intercalation, which is beneficial for the charge process of rechargeable batteries. Meanwhile, for TiO2-B with high Li-ion concentration (x(Li/Ti) = 1), saturated oxygen-deficient TiO2-B with lower insertion voltage favors Li-ion deintercalation, which aids the discharge process. Electronic structure calculations suggest that the band gap of this defect-containing material is within 1.0-2.0 eV, which is narrower than that of defect-free TiO2-B (3.0 eV). The main contributor to the band-gap narrowing is the density of the Ti-Ov-3d state, which becomes much higher as the oxygen vacancy content increases, which increases electronic conductivity.
  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644

    2. [2]

      (2) Wagner, F. T.; Lakshmanan, B.; Mathias, M. F. Journal of Physical Chemistry Letters 2010, 1, 2204. doi: 10.1021/jz100553m

    3. [3]

      (3) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a

    4. [4]

      (4) Liu, Y.; Wu, J.; Zhao, W.; Chu, J.; Qi, T. Chinese Journal of Chemistry 2013, 31, 1257. doi: 10.1002/cjoc.201300380

    5. [5]

      (5) Tian, M.; Wang, W.; Wei, Y.; Yang, R. Journal of Power Sources 2012, 211, 46. doi: 10.1016/j.jpowsour.2012.03.084

    6. [6]

      (6) Xu, G.; Zhong, K.; Zhang, J. M.; Huang, Z. Journal of Applied Physics 2014, 116, 063703. doi: 10.1063/1.4892018

    7. [7]

      (7) Hong, Z.; Wei, M.; Lan, T.; Cao, G. Nano Energy 2012, 1, 466. doi: 10.1016/j.nanoen.2012.02.009

    8. [8]

      (8) Anicete-Santos, M.; Gracia, L.; Beltrán, A.; Andrés, J.; Varela, J.; Longo, E. Phys. Rev. B 2008, 77, 085112. doi: 10.1103/PhysRevB.77.085112

    9. [9]

      (9) Chu, D.; Yuan, X.; Qin, G.; Xu, M.; Zheng, P.; Lu, J.; Zha, L.Journal of Nanoparticle Research 2007, 10, 357.

    10. [10]

      (10) Gao, Q.; Gu, M.; Nie, A.; Mashayek, F.; Wang, C.; Odegard, G. M.; Shahbazian-Yassar, R. Chem. Mat. 2014, 26, 1660. doi: 10.1021/cm403951b

    11. [11]

      (11) Laskova, B.; Zukalova, M.; Zukal, A.; Bousa, M.; Kavan, L.Journal of Power Sources 2014, 246, 103.

    12. [12]

      (12) Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Grätzel, M.Chem. Mat. 2005, 17, 1248. doi: 10.1021/cm048249t

    13. [13]

      (13) Liu, S.; Wang, Z.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J.; Eychmüller, A.; Lou, X.W. Advanced Materials 2013, 25, 3462. doi: 10.1002/adma.v25.25

    14. [14]

      (14) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angewandte Chemie International Edition 2008, 47, 2930.

    15. [15]

      (15) Dylla, A. G.; Xiao, P.; Henkelman, G.; Stevenson, K. J. The Journal of Physical Chemistry Letters 2012, 3, 2015. doi: 10.1021/jz300766a

    16. [16]

      (16) Li, X.; Zhang, Y.; Li, T.; Zhong, Q.; Li, H.; Huang, J. Journal of Power Sources 2014, 268, 372. doi: 10.1016/j.jpowsour.2014.06.056

    17. [17]

      (17) Lv, C. J.; Hu, T.; Shu, K.; Chen, D.; Tian, G. Microscopy Research and Technique 2014, 77, 170. doi: 10.1002/jemt.v77.2

    18. [18]

      (18) Zhou, W.; Liu, H.; Boughton, R. I.; Du, G.; Lin, J.; Wang, J.; Liu, D. Journal of Materials Chemistry 2010, 20, 5993. doi: 10.1039/b927224k

    19. [19]

      (19) Yin, W. J.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. Phys. Rev. Lett. 2011, 106, 066801. doi: 10.1103/PhysRevLett.106.066801

    20. [20]

      (20) Gai, Y. Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Phys. Rev. Lett. 2009, 102, 4.

    21. [21]

      (21) Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Journal of Materials Chemistry A 2013, 1, 14507. doi: 10.1039/c3ta13491a

    22. [22]

      (22) Li, G.; Zhang, Z.; Peng, H.; Chen, K. RSC Advances 2013, 3, 11507. doi: 10.1039/c3ra41858h

    23. [23]

      (23) Qiu, J.; Li, S.; Gray, E.; Liu, H.; Gu, Q. F.; Sun, C.; Lai, C.; Zhao, H.; Zhang, S. The Journal of Physical Chemistry C2014, 118, 8824.

    24. [24]

      (24) Myung, S. T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.J.; Sun, Y. K.; Scrosati, B. Energy & Environmental Science2013, 6, 2609.

    25. [25]

      (25) Shin, J. Y.; Joo, J. H.; Samuelis, D.; Maier, J. Chem. Mat.2012, 24, 543. doi: 10.1021/cm2031009

    26. [26]

      (26) Zhang, Z.; Zhou, Z.; Nie, S.; Wang, H.; Peng, H.; Li, G.; Chen, K. Journal of Power Sources 2014, 267, 388. doi: 10.1016/j.jpowsour.2014.05.121

    27. [27]

      (27) Arrouvel, C.; Parker, S. C.; Islam, M. S. Chem. Mat. 2009, 21, 4778. doi: 10.1021/cm900373u

    28. [28]

      (28) Armstrong, A. R.; Arrouvel, C.; Gentili, V.; Parker, S. C.; Islam, M. S.; Bruce, P. G. Chem. Mat. 2010, 22, 6426. doi: 10.1021/cm102589x

    29. [29]

      (29) Panduwinata, D.; Gale, J. D. Journal of Materials Chemistry2009, 19, 3931. doi: 10.1039/b902683e

    30. [30]

      (30) Di Valentin, C.; Pacchioni, G.; Selloni, A. Journal of Physical Chemistry C 2009, 113, 20543. doi: 10.1021/jp9061797

    31. [31]

      (31) Finazzi, E.; Di Valentin, C.; Pacchioni, G. Journal of Physical Chemistry C 2009, 113, 3382.

    32. [32]

      (32) Shin, J. Y.; Samuelis, D.; Maier, J. Solid State Ionics 2012, 225, 590. doi: 10.1016/j.ssi.2011.12.003

    33. [33]

      (33) Kresse, G.; Furthmüller, J. Computational Materials Science1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    34. [34]

      (34) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251

    35. [35]

      (35) Perdew, J. P.; Wang, Y. Physical Review B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244

    36. [36]

      (36) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.

    37. [37]

      (37) Monkhorst, H. J.; Pack, J. D. Physical Review B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    38. [38]

      (38) Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Physical Review B1991, 44, 943. doi: 10.1103/PhysRevB.44.943

    39. [39]

      (39) Nolan, M.; Elliott, S.; Mulley, J.; Bennett, R.; Basham, M.; Mulheran, P. Physical Review B 2008, 77, 235424. doi: 10.1103/PhysRevB.77.235424

    40. [40]

      (40) Yang, J.; Lv, C. Q.; Guo, Y.; Wang, G. C. The Journal of Chemical Physics 2012, 136, 104107. doi: 10.1063/1.3692292

    41. [41]

      (41) Yang, J.; Cao, L. X.; Wang, G. C. Journal of Molecular Modeling 2012, 18, 3329. doi: 10.1007/s00894-011-1337-4

    42. [42]

      (42) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C.J.; Sutton, A. P. Physical Review B 1998, 57, 1505. doi: 10.1103/PhysRevB.57.1505

    43. [43]

      (43) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. The Journal of Chemical Physics 2000, 113, 9901. doi: 10.1063/1.1329672

    44. [44]

      (44) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Computational Materials Science 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010

    45. [45]

      (45) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochemical and Solid-State Letters 2004, 7, A30.

    46. [46]

      (46) Kang, K.; Ceder, G. Phys. Rev. B 2006, 74, 094105. doi: 10.1103/PhysRevB.74.094105

    47. [47]

      (47) Braithwaite, J. S.; Catlow, C.; Harding, J. H.; Gale, J. D.Physical Chemistry Chemical Physics 2001, 3, 4052. doi: 10.1039/b103928h

    48. [48]

      (48) Keller, D. V.; Kanda, F. A.; King, A. J. The Journal of Physical Chemistry 1958, 62, 732. doi: 10.1021/j150564a024

    49. [49]

      (49) Feist, T. P.; Davies, P. K. Journal of Solid State Chemistry1992, 101, 275. doi: 10.1016/0022-4596(92)90184-W

    50. [50]

      (50) Dalton, A. S.; Belak, A. A.; Van der Ven, A. Chem. Mat. 2012, 24, 1568. doi: 10.1021/cm203283v

    51. [51]

      (51) Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. J. Chem. Phys. 2008, 129, 154113. doi: 10.1063/1.2996362

    52. [52]

      (52) Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M. H. Chem. Mat. 2008, 20, 6528. doi: 10.1021/cm801741m

    53. [53]

      (53) Graciani, J.; Ortega, Y.; Sanz, J. F. Chem. Mat. 2009, 21, 1431. doi: 10.1021/cm803436e

  • 加载中
    1. [1]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(1)
  • Abstract views(535)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return