Citation: KONG Ling-Ming, ZHU Bao-Lin, PANG Xian-Yong, WANG Gui-Chang. First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 656-664. doi: 10.3866/PKU.WHXB201512292
-
Density functional theory calculations were carried out on oxygen-deficient TiO2-B to evaluate the effect of oxygen vacancies on its electrochemical properties. The computational studies focused on the lithium (Li)-ion transport and electronic conductivity of this defect-containing material. Calculations on TiO2-B with low Li-ion concentration (x(Li/Ti) ⩽ 0.25) suggest that compared with defect-free TiO2-B, oxygen-deficient TiO2-B has a higher intercalation voltage and lower migration activation energy along the b-axis channel. This facilitates Li-ion intercalation, which is beneficial for the charge process of rechargeable batteries. Meanwhile, for TiO2-B with high Li-ion concentration (x(Li/Ti) = 1), saturated oxygen-deficient TiO2-B with lower insertion voltage favors Li-ion deintercalation, which aids the discharge process. Electronic structure calculations suggest that the band gap of this defect-containing material is within 1.0-2.0 eV, which is narrower than that of defect-free TiO2-B (3.0 eV). The main contributor to the band-gap narrowing is the density of the Ti-Ov-3d state, which becomes much higher as the oxygen vacancy content increases, which increases electronic conductivity.
-
-
[1]
(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
-
[2]
(2) Wagner, F. T.; Lakshmanan, B.; Mathias, M. F. Journal of Physical Chemistry Letters 2010, 1, 2204. doi: 10.1021/jz100553m
-
[3]
(3) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
-
[4]
(4) Liu, Y.; Wu, J.; Zhao, W.; Chu, J.; Qi, T. Chinese Journal of Chemistry 2013, 31, 1257. doi: 10.1002/cjoc.201300380
-
[5]
(5) Tian, M.; Wang, W.; Wei, Y.; Yang, R. Journal of Power Sources 2012, 211, 46. doi: 10.1016/j.jpowsour.2012.03.084
-
[6]
(6) Xu, G.; Zhong, K.; Zhang, J. M.; Huang, Z. Journal of Applied Physics 2014, 116, 063703. doi: 10.1063/1.4892018
-
[7]
(7) Hong, Z.; Wei, M.; Lan, T.; Cao, G. Nano Energy 2012, 1, 466. doi: 10.1016/j.nanoen.2012.02.009
-
[8]
(8) Anicete-Santos, M.; Gracia, L.; Beltrán, A.; Andrés, J.; Varela, J.; Longo, E. Phys. Rev. B 2008, 77, 085112. doi: 10.1103/PhysRevB.77.085112
-
[9]
(9) Chu, D.; Yuan, X.; Qin, G.; Xu, M.; Zheng, P.; Lu, J.; Zha, L.Journal of Nanoparticle Research 2007, 10, 357.
-
[10]
(10) Gao, Q.; Gu, M.; Nie, A.; Mashayek, F.; Wang, C.; Odegard, G. M.; Shahbazian-Yassar, R. Chem. Mat. 2014, 26, 1660. doi: 10.1021/cm403951b
-
[11]
(11) Laskova, B.; Zukalova, M.; Zukal, A.; Bousa, M.; Kavan, L.Journal of Power Sources 2014, 246, 103.
-
[12]
(12) Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Grätzel, M.Chem. Mat. 2005, 17, 1248. doi: 10.1021/cm048249t
-
[13]
(13) Liu, S.; Wang, Z.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J.; Eychmüller, A.; Lou, X.W. Advanced Materials 2013, 25, 3462. doi: 10.1002/adma.v25.25
-
[14]
(14) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angewandte Chemie International Edition 2008, 47, 2930.
-
[15]
(15) Dylla, A. G.; Xiao, P.; Henkelman, G.; Stevenson, K. J. The Journal of Physical Chemistry Letters 2012, 3, 2015. doi: 10.1021/jz300766a
-
[16]
(16) Li, X.; Zhang, Y.; Li, T.; Zhong, Q.; Li, H.; Huang, J. Journal of Power Sources 2014, 268, 372. doi: 10.1016/j.jpowsour.2014.06.056
-
[17]
(17) Lv, C. J.; Hu, T.; Shu, K.; Chen, D.; Tian, G. Microscopy Research and Technique 2014, 77, 170. doi: 10.1002/jemt.v77.2
-
[18]
(18) Zhou, W.; Liu, H.; Boughton, R. I.; Du, G.; Lin, J.; Wang, J.; Liu, D. Journal of Materials Chemistry 2010, 20, 5993. doi: 10.1039/b927224k
-
[19]
(19) Yin, W. J.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. Phys. Rev. Lett. 2011, 106, 066801. doi: 10.1103/PhysRevLett.106.066801
-
[20]
(20) Gai, Y. Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Phys. Rev. Lett. 2009, 102, 4.
-
[21]
(21) Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Journal of Materials Chemistry A 2013, 1, 14507. doi: 10.1039/c3ta13491a
-
[22]
(22) Li, G.; Zhang, Z.; Peng, H.; Chen, K. RSC Advances 2013, 3, 11507. doi: 10.1039/c3ra41858h
-
[23]
(23) Qiu, J.; Li, S.; Gray, E.; Liu, H.; Gu, Q. F.; Sun, C.; Lai, C.; Zhao, H.; Zhang, S. The Journal of Physical Chemistry C2014, 118, 8824.
-
[24]
(24) Myung, S. T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.J.; Sun, Y. K.; Scrosati, B. Energy & Environmental Science2013, 6, 2609.
-
[25]
(25) Shin, J. Y.; Joo, J. H.; Samuelis, D.; Maier, J. Chem. Mat.2012, 24, 543. doi: 10.1021/cm2031009
-
[26]
(26) Zhang, Z.; Zhou, Z.; Nie, S.; Wang, H.; Peng, H.; Li, G.; Chen, K. Journal of Power Sources 2014, 267, 388. doi: 10.1016/j.jpowsour.2014.05.121
-
[27]
(27) Arrouvel, C.; Parker, S. C.; Islam, M. S. Chem. Mat. 2009, 21, 4778. doi: 10.1021/cm900373u
-
[28]
(28) Armstrong, A. R.; Arrouvel, C.; Gentili, V.; Parker, S. C.; Islam, M. S.; Bruce, P. G. Chem. Mat. 2010, 22, 6426. doi: 10.1021/cm102589x
-
[29]
(29) Panduwinata, D.; Gale, J. D. Journal of Materials Chemistry2009, 19, 3931. doi: 10.1039/b902683e
-
[30]
(30) Di Valentin, C.; Pacchioni, G.; Selloni, A. Journal of Physical Chemistry C 2009, 113, 20543. doi: 10.1021/jp9061797
-
[31]
(31) Finazzi, E.; Di Valentin, C.; Pacchioni, G. Journal of Physical Chemistry C 2009, 113, 3382.
-
[32]
(32) Shin, J. Y.; Samuelis, D.; Maier, J. Solid State Ionics 2012, 225, 590. doi: 10.1016/j.ssi.2011.12.003
-
[33]
(33) Kresse, G.; Furthmüller, J. Computational Materials Science1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[34]
(34) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[35]
(35) Perdew, J. P.; Wang, Y. Physical Review B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[36]
(36) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
-
[37]
(37) Monkhorst, H. J.; Pack, J. D. Physical Review B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[38]
(38) Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Physical Review B1991, 44, 943. doi: 10.1103/PhysRevB.44.943
-
[39]
(39) Nolan, M.; Elliott, S.; Mulley, J.; Bennett, R.; Basham, M.; Mulheran, P. Physical Review B 2008, 77, 235424. doi: 10.1103/PhysRevB.77.235424
-
[40]
(40) Yang, J.; Lv, C. Q.; Guo, Y.; Wang, G. C. The Journal of Chemical Physics 2012, 136, 104107. doi: 10.1063/1.3692292
-
[41]
(41) Yang, J.; Cao, L. X.; Wang, G. C. Journal of Molecular Modeling 2012, 18, 3329. doi: 10.1007/s00894-011-1337-4
-
[42]
(42) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C.J.; Sutton, A. P. Physical Review B 1998, 57, 1505. doi: 10.1103/PhysRevB.57.1505
-
[43]
(43) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. The Journal of Chemical Physics 2000, 113, 9901. doi: 10.1063/1.1329672
-
[44]
(44) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Computational Materials Science 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010
-
[45]
(45) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochemical and Solid-State Letters 2004, 7, A30.
-
[46]
(46) Kang, K.; Ceder, G. Phys. Rev. B 2006, 74, 094105. doi: 10.1103/PhysRevB.74.094105
-
[47]
(47) Braithwaite, J. S.; Catlow, C.; Harding, J. H.; Gale, J. D.Physical Chemistry Chemical Physics 2001, 3, 4052. doi: 10.1039/b103928h
-
[48]
(48) Keller, D. V.; Kanda, F. A.; King, A. J. The Journal of Physical Chemistry 1958, 62, 732. doi: 10.1021/j150564a024
-
[49]
(49) Feist, T. P.; Davies, P. K. Journal of Solid State Chemistry1992, 101, 275. doi: 10.1016/0022-4596(92)90184-W
-
[50]
(50) Dalton, A. S.; Belak, A. A.; Van der Ven, A. Chem. Mat. 2012, 24, 1568. doi: 10.1021/cm203283v
-
[51]
(51) Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. J. Chem. Phys. 2008, 129, 154113. doi: 10.1063/1.2996362
-
[52]
(52) Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M. H. Chem. Mat. 2008, 20, 6528. doi: 10.1021/cm801741m
-
[53]
(53) Graciani, J.; Ortega, Y.; Sanz, J. F. Chem. Mat. 2009, 21, 1431. doi: 10.1021/cm803436e
-
[1]
-
-
[1]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[2]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[3]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[4]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[5]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[6]
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
-
[7]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[8]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[9]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[10]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[11]
Xiao Xiao , Biao Chen , Jia-Wei Li , Jun-Bo Zheng , Xu Wang , Hang Zhao , Fen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280
-
[12]
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
-
[13]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[14]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[15]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[16]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[17]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(408)
- HTML views(23)