Citation: XIANG Jun-Feng, YI Ping-Gui, REN Zhi-Yong, YU Xian-Yong, CHEN Jian, LIU Wu, LI Tao-Mei. Effect of Supra-Molecular Interaction on the Intramolecular Proton Transfer of 2-(2-Aminophenyl)benzothiazole[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 624-630. doi: 10.3866/PKU.WHXB201512291 shu

Effect of Supra-Molecular Interaction on the Intramolecular Proton Transfer of 2-(2-Aminophenyl)benzothiazole

  • Corresponding author: YI Ping-Gui, 
  • Received Date: 28 August 2015
    Available Online: 28 December 2015

    Fund Project: 国家自然科学基金(21172066,20971041) (21172066,20971041)湖南省高校科技创新团队项目(湘教通[2012]318)资助 (湘教通[2012]318)

  • The excited-state intramolecular proton transfer of 2-(2-aminophenyl)benzothiazole (APBT) in different environments was detected by steady-state and transient fluorescence spectral measurements and quantum chemical calculations. The results showed that the polarity and protonation of the solution strongly affect the proton transfer of APBT. When APBT and cucurbit[7]uril (CB[7]) were mixed with each other, we found that the proton transfer process of APBT was restrained by the formation of a complex with a stoichiometric ratio of 1 : 1. The association constant and thermodynamic parameters of this complex were calculated. 1H NMR spectroscopy and quantum chemical calculation data indicated that a 1 : 1 APBT@CB[7] complex of the amine or imine tautomer of APBT formed.
  • 加载中
    1. [1]

      (1) Liu, L.; Yang, D. P.; Li, P. J. Phys. Chem. B 2014, 118, 11707. doi: 10.1021/jp5082017

    2. [2]

      (2) Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. J. Org. Chem. 2013, 78, 2482. doi: 10.1021/jo302711t

    3. [3]

      (3) Lee, J. H.; Kim, C. H.; Joo, T. H. J. Phys. Chem. A 2013, 117, 1400. doi: 10.1021/jp311884b

    4. [4]

      (4) Bacchi, A.; Carcelli, M.; Compari, C.; Fisicaro, E.; Pala, N.; Rispoli, G.; Rogolino, D.; Sanchez, T.W.; Sechi, M.; Sinisi, V.; Neamati, N. J. Med. Chem. 2011, 54, 8407. doi: 10.1021/jm200851g

    5. [5]

      (5) Xu, H.; Xu, Z. F.; Yue, Z. Y.; Yan, P. F.; Wang, B.; Jia, L.W.; Li, G. M.; Sun, W. B.; Zhang, J.W. J. Phys. Chem. C 2008, 112, 15517.

    6. [6]

      (6) Abderrazzak, D.; Francisco, A. G.; Acufia, A. U. J. Phys. Chem. 1995, 99, 76. doi: 10.1021/j100001a014

    7. [7]

      (7) Abou-Zied, O. K.; Jimenez, R.; Thompson, E. H. Z.; Millar, D.P.; Romesberg, F. E. J. Phys. Chem. A 2002, 106, 3665. doi: 10.1021/jp013915o

    8. [8]

      (8) Shaikh, M.; Dutta, C. S.; Mohanty, J.; Bhasikuttan, A. C.; Nau, W. M.; Pal, H. Chem. Eur. J. 2009, 15, 12362. doi: 10.1002/chem.v15: 45

    9. [9]

      (9) Luque, A. M.; Mulder, W. H.; Calvente, J. J.; Cuesta, A.; Andreu, R. Anal. Chem. 2012, 84, 5778. doi: 10.1021/ac301040r

    10. [10]

      (10) Majumdar, P.; Zhao, J. Z. J. Phys. Chem. B 2015, 119, 2384. doi: 10.1021/jp5068507

    11. [11]

      (11) Aly, S. M.; Usman, A.; AlZayer, M.; Hamdi, G. A.; Alarousu, E.; Mohammed, O. F. J. Phys. Chem. B 2015, 119, 2596. doi: 10.1021/jp508777h

    12. [12]

      (12) Bacchi, A.; Carcelli, M.; Compari, C.; Fisicaro, E.; Pala, N.; Rispoli, G.; Rogolino, D.; Sanchez, T.W.; Sechi, M.; Sinisi, V.; Neamati, N. J. Med. Chem. 2011, 54, 8407. doi: 10.1021/jm200851g

    13. [13]

      (13) Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc.1981, 103, 7367. doi: 10.1021/ja00414a070

    14. [14]

      (14) Kaifer, A. E. Acc. Chem. Res. 2014, 47, 2160. doi: 10.1021/ar5001204

    15. [15]

      (15) Dutta, C. S.; Mohanty, J.; Bhasikuttan, A. C.; Pal, H. J. Phys. Chem. B 2010, 114, 10717.

    16. [16]

      (16) Nuno, B.; Laia, C. A. T.; Pina, F. J. Phys. Chem. B 2015, 119, 2749. doi: 10.1021/jp511351w

    17. [17]

      (17) Hein, D.W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc.1957, 79, 427. doi: 10.1021/ja01559a053

    18. [18]

      (18) Polyakov, N. E.; Leshina, T. V.; Salakhutdinov, N. F.; Kispert, L. D. J. Phys. Chem. B 2006, 110, 6991. doi: 10.1021/jp056038l

    19. [19]

      (19) Mohanty, J.; Bhasikutta, A. C.; Nau, W. M.; Pal, H. J. Phys. Chem. B 2006, 110, 5132. doi: 10.1021/jp056411p

    20. [20]

      (20) Qun, L. B.; Wang, L.; Chen, X. L.; Yuan, J.W.; Yang, R.; Li, P.Acta Chim. Sin. 2007, 65, 2417. [屈凌波, 王玲, 陈晓岚, 袁金伟, 杨冉, 李萍. 化学学报, 2007, 65, 2417.]

    21. [21]

      (21) Liu, X. F.; Xia, Y. M.; Fang, Y.; Zou, L.; Liu, L. L. Acta Chim. Sin. 2004, 62, 1484. [刘雪锋, 夏咏梅, 方云, 邹鲁, 刘玲玲. 化学学报, 2004, 62, 1484.]

    22. [22]

      (22) Ross, D. P.; Subramanian, S. Biochemistry 1981, 20, 3096. doi: 10.1021/bi00514a017

    23. [23]

      (23) Paul, B. K.; Samanta, A.; Guchhait, N. Langmuir 2010, 26, 3214. doi: 10.1021/la903196k

  • 加载中
    1. [1]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    2. [2]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    9. [9]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(0)
  • Abstract views(714)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return