Citation: XIANG Jun-Feng, YI Ping-Gui, REN Zhi-Yong, YU Xian-Yong, CHEN Jian, LIU Wu, LI Tao-Mei. Effect of Supra-Molecular Interaction on the Intramolecular Proton Transfer of 2-(2-Aminophenyl)benzothiazole[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 624-630. doi: 10.3866/PKU.WHXB201512291 shu

Effect of Supra-Molecular Interaction on the Intramolecular Proton Transfer of 2-(2-Aminophenyl)benzothiazole

  • Corresponding author: YI Ping-Gui, 
  • Received Date: 28 August 2015
    Available Online: 28 December 2015

    Fund Project: 国家自然科学基金(21172066,20971041) (21172066,20971041)湖南省高校科技创新团队项目(湘教通[2012]318)资助 (湘教通[2012]318)

  • The excited-state intramolecular proton transfer of 2-(2-aminophenyl)benzothiazole (APBT) in different environments was detected by steady-state and transient fluorescence spectral measurements and quantum chemical calculations. The results showed that the polarity and protonation of the solution strongly affect the proton transfer of APBT. When APBT and cucurbit[7]uril (CB[7]) were mixed with each other, we found that the proton transfer process of APBT was restrained by the formation of a complex with a stoichiometric ratio of 1 : 1. The association constant and thermodynamic parameters of this complex were calculated. 1H NMR spectroscopy and quantum chemical calculation data indicated that a 1 : 1 APBT@CB[7] complex of the amine or imine tautomer of APBT formed.
  • 加载中
    1. [1]

      (1) Liu, L.; Yang, D. P.; Li, P. J. Phys. Chem. B 2014, 118, 11707. doi: 10.1021/jp5082017

    2. [2]

      (2) Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. J. Org. Chem. 2013, 78, 2482. doi: 10.1021/jo302711t

    3. [3]

      (3) Lee, J. H.; Kim, C. H.; Joo, T. H. J. Phys. Chem. A 2013, 117, 1400. doi: 10.1021/jp311884b

    4. [4]

      (4) Bacchi, A.; Carcelli, M.; Compari, C.; Fisicaro, E.; Pala, N.; Rispoli, G.; Rogolino, D.; Sanchez, T.W.; Sechi, M.; Sinisi, V.; Neamati, N. J. Med. Chem. 2011, 54, 8407. doi: 10.1021/jm200851g

    5. [5]

      (5) Xu, H.; Xu, Z. F.; Yue, Z. Y.; Yan, P. F.; Wang, B.; Jia, L.W.; Li, G. M.; Sun, W. B.; Zhang, J.W. J. Phys. Chem. C 2008, 112, 15517.

    6. [6]

      (6) Abderrazzak, D.; Francisco, A. G.; Acufia, A. U. J. Phys. Chem. 1995, 99, 76. doi: 10.1021/j100001a014

    7. [7]

      (7) Abou-Zied, O. K.; Jimenez, R.; Thompson, E. H. Z.; Millar, D.P.; Romesberg, F. E. J. Phys. Chem. A 2002, 106, 3665. doi: 10.1021/jp013915o

    8. [8]

      (8) Shaikh, M.; Dutta, C. S.; Mohanty, J.; Bhasikuttan, A. C.; Nau, W. M.; Pal, H. Chem. Eur. J. 2009, 15, 12362. doi: 10.1002/chem.v15: 45

    9. [9]

      (9) Luque, A. M.; Mulder, W. H.; Calvente, J. J.; Cuesta, A.; Andreu, R. Anal. Chem. 2012, 84, 5778. doi: 10.1021/ac301040r

    10. [10]

      (10) Majumdar, P.; Zhao, J. Z. J. Phys. Chem. B 2015, 119, 2384. doi: 10.1021/jp5068507

    11. [11]

      (11) Aly, S. M.; Usman, A.; AlZayer, M.; Hamdi, G. A.; Alarousu, E.; Mohammed, O. F. J. Phys. Chem. B 2015, 119, 2596. doi: 10.1021/jp508777h

    12. [12]

      (12) Bacchi, A.; Carcelli, M.; Compari, C.; Fisicaro, E.; Pala, N.; Rispoli, G.; Rogolino, D.; Sanchez, T.W.; Sechi, M.; Sinisi, V.; Neamati, N. J. Med. Chem. 2011, 54, 8407. doi: 10.1021/jm200851g

    13. [13]

      (13) Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc.1981, 103, 7367. doi: 10.1021/ja00414a070

    14. [14]

      (14) Kaifer, A. E. Acc. Chem. Res. 2014, 47, 2160. doi: 10.1021/ar5001204

    15. [15]

      (15) Dutta, C. S.; Mohanty, J.; Bhasikuttan, A. C.; Pal, H. J. Phys. Chem. B 2010, 114, 10717.

    16. [16]

      (16) Nuno, B.; Laia, C. A. T.; Pina, F. J. Phys. Chem. B 2015, 119, 2749. doi: 10.1021/jp511351w

    17. [17]

      (17) Hein, D.W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc.1957, 79, 427. doi: 10.1021/ja01559a053

    18. [18]

      (18) Polyakov, N. E.; Leshina, T. V.; Salakhutdinov, N. F.; Kispert, L. D. J. Phys. Chem. B 2006, 110, 6991. doi: 10.1021/jp056038l

    19. [19]

      (19) Mohanty, J.; Bhasikutta, A. C.; Nau, W. M.; Pal, H. J. Phys. Chem. B 2006, 110, 5132. doi: 10.1021/jp056411p

    20. [20]

      (20) Qun, L. B.; Wang, L.; Chen, X. L.; Yuan, J.W.; Yang, R.; Li, P.Acta Chim. Sin. 2007, 65, 2417. [屈凌波, 王玲, 陈晓岚, 袁金伟, 杨冉, 李萍. 化学学报, 2007, 65, 2417.]

    21. [21]

      (21) Liu, X. F.; Xia, Y. M.; Fang, Y.; Zou, L.; Liu, L. L. Acta Chim. Sin. 2004, 62, 1484. [刘雪锋, 夏咏梅, 方云, 邹鲁, 刘玲玲. 化学学报, 2004, 62, 1484.]

    22. [22]

      (22) Ross, D. P.; Subramanian, S. Biochemistry 1981, 20, 3096. doi: 10.1021/bi00514a017

    23. [23]

      (23) Paul, B. K.; Samanta, A.; Guchhait, N. Langmuir 2010, 26, 3214. doi: 10.1021/la903196k

  • 加载中
    1. [1]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    19. [19]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return