Citation: YANG Zhen, HE Yuan-Hang. Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 921-928. doi: 10.3866/PKU.WHXB201512251 shu

Pyrolysis of Octanitrocubane via Molecular Dynamics Simulations

  • Corresponding author: HE Yuan-Hang, 
  • Received Date: 14 October 2015
    Available Online: 24 December 2015

  • As the requirements for the performance of high-energy-density materials increase, research to develop new types of high-energy-density materials has become highly heated recently. Octanitrocubane, by virtue of its superior performance, is one of the typical representatives of recently developed high-energy-density materials. However, there have been few studies on the thermal decomposition mechanism of octanitrocubane, even though they are essential to analyze the thermostability and sensitivity of octanitrocubane, as well as to achieve its efficient application. In this study, the initial pyrolysis process of condensed-phase octanitrocubane at high temperature was investigated using ReaxFF reactive molecular dynamics simulation. The results showed that it is the C-C bond of the octanitrocubane cage skeleton structure that breaks first, and then octanitrocubane cage skeleton structure is gradually destroyed, and the small molecules such as NO2 and O occur afterwards. The simulation identified three different damage pathways of the cage skeleton. The main products of octanitrocubane thermal decomposition at high temperature are NO2, O2, CO2, N2, NO3, NO, CNO, and CO, of which N2 and CO2 are the final products. The products that form depend on temperature.
  • 加载中
    1. [1]

      (1) Qiu, L.; Xu, X. J.; Xiao, H. M. Chin. J. Energy Mater. 2005, 13, 262. [邱玲, 许晓娟, 肖鹤鸣. 含能材料, 2005, 13, 262.]

    2. [2]

      (2) Zhang, J. Quantum Chemical Studies on the Structures and Properties of Organic Caged Energetic Compounds Including Polynitrocubanes. Ph. D. Dissertation, Nanjing University of Science and Technology, Nanjing, 2003. [张骥. 多硝基立方烷等有机笼状高能化合物结构和性能的量子化学研究[D]. 南京: 南京理工大学, 2003.]

    3. [3]

      (3) Ji, Y. P.;Wang, B. Z.; Zhang, Z. Z.; Lu, Q.; Zhu, C. H. Chin. J. Energy Mater. 2004, 12, 189. [姬月萍, 王伯周, 张志忠, 刘愆, 朱春华. 含能材料, 2004, 12, 189.]

    4. [4]

      (4) Eaton, P. E.; Cole, T.W., Jr. J. Am. Chem. Soc. 1964, 86, 3157. doi: 10.1021/ja01069a041

    5. [5]

      (5) Eaton, P. E.; Cole, T.W., Jr. J. Am. Chem. Soc. 1964, 86, 962. doi: 10.1021/ja01059a072

    6. [6]

      (6) Lukin, K.; Li, J. C.; Gilardi, R.; Eaton, P. E. Angew. Chem. Int. Edit. 1996, 35, 864. doi: 10.1002/anie.199608641

    7. [7]

      (7) Lukin, K.; Li, J. C.; Gilardi, R.; Eaton, P. E. Angew. Chem. Int. Edit. 1996, 35, 866. doi: 10.1002/anie.199608661

    8. [8]

      (8) Lukin, K. A.; Li, J. C.; Eaton, P. E.; Gilardi, R. J. Org. Chem. 1997, 62, 8490. doi: 10.1021/jo971308k

    9. [9]

      (9) Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Edit. 2000, 39, 401. doi: 10.1002/(SICI)1521-3757(20000117)112: 2<422::AID-ANGE422>3.0.CO;2-2

    10. [10]

      (10) Richard, R. M.; Ball, D.W. J. Hazard. Mater. 2009, 164, 1595. doi: 10.1016/j.jhazmat.2008.09.078

    11. [11]

      (11) Richard, R. M.; Ball, D.W. J. Hazard. Mater. 2009, 164, 1552. doi: 10.1016/j.jhazmat.2008.08.057

    12. [12]

      (12) Peköz, R.; Erkoç, Ş. Comput. Mater. Sci. 2009, 46, 849. doi: 10.1016/j.commatsci.2009.04.020

    13. [13]

      (13) Chi, W. J.; Li, L. L.; Li, B. T.;Wu, H. S. J. Mol. Model. 2013, 19, 571. doi: 10.1007/s00894-012-1582-1

    14. [14]

      (14) Owens, F. J. J. Mol. Struct. 1999, 460, 137. doi: 10.1016/ S0166-1280(98)00312-1

    15. [15]

      (15) Chi, W.;Wang, X. Y.; Li, B. T.;Wu, H. S. J. Mol. Model. 2012, 18, 4217. doi: 10.1007/s00894-012-1430-3

    16. [16]

      (16) Li, J. S. Theor. Chem. Acc. 2009, 122, 101. doi: 10.1007/s00214-008-0489-5

    17. [17]

      (17) Liu, L. C.; Bai, C.; Sun, H.; Goddard, W. A., III. J. Phys. Chem. A 2011, 115, 4941. doi: 10.1021/jp110435p

    18. [18]

      (18) Zhan, J. H.;Wu, R. C.; Liu, X. X.; Gao, S. Q.; Xu, G. G. Fuel 2014, 134, 283. doi: 10.1016/j.fuel.2014.06.005

    19. [19]

      (19) Ghenoweth, K.; van Duin, A. C. T.; Dasgupta, S.; Goddard, W. A., III. J. Phys. Chem. A 2009, 113, 1740. doi: 10.1021/jp8081479

    20. [20]

      (20) Cheung, S.; Deng, W. Q.; van Duin, A. C. T.; Goddard, W. A., III. J. Phys. Chem. A 2005, 109, 851. doi: 10.1021/jp0460184

    21. [21]

      (21) Mueller, J. E.; van Duin, A. C. T.; Goddard, W. A., III. J. Phys. Chem. C 2010, 114, 4939. doi: 10.1021/la4006983

    22. [22]

      (22) Kim, S. Y.; Kumar, N.; Persson, P.; Sofo, J.; van Duin, A. C. T.; Kubicki, J. D. Langmuir 2013, 29, 7838. doi: 10.1021/la4006983

    23. [23]

      (23) Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.; Goddard, W. A. J. Chem. Phys. 2005, 122, 54502. doi: 10.1063/1.1831277

    24. [24]

      (24) Liu, H.; Dong, X.; He, Y. H. Acta Phys. -Chim. Sin. 2014, 30, 232. [刘海, 董晓, 何远航. 物理化学学报, 2014, 30, 232.] doi: 10.3866/PKU.WHXB201312101

    25. [25]

      (25) Liu, H.; Li, Q. K.; He, Y. H. Acta Phys. Sin. 2013, 62, 1. [刘海, 李启楷, 何远航. 物理学报, 2013, 62, 1.] doi: 10.7498/aps.62.208202

    26. [26]

      (26) Zhou, T. T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w

    27. [27]

      (27) http://lammps.sandia.gov/ (accessed Nov 16, 2015).

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(304)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return