Citation: CHEN Feng-Feng, DONG Yan, SANG Xiao-Yan, ZHOU Yan, TAO Duan-Jian. Physicochemical Properties and CO2 Solubility of Tetrabutylphosphonium Carboxylate Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 605-610. doi: 10.3866/PKU.WHXB201512241
-
Four tetrabutylphosphonium carboxylate ionic liquids ([P4444][CA]) were prepared, and their densities, viscosities, refractive indices, and conductivities were measured and correlated with thermodynamic and empirical equations in the temperature range of 298.15-348.15 K. The influence of temperature on these four properties of [P4444][CA] was discussed, and their thermal expansion coefficient values were calculated. The CO2 absorption capacity of [P4444][CA] was studied at 313.15 K and 100 kPa. The results indicated that [P4444][Buty] had the highest CO2 capture capacity among these ionic liquids, with an absorption capacity of 0.4 mol·mol-1 and balance time of less than 5 min.
-
-
[1]
(1) Welton, T. Chem. Rev. 1999, 99, 2071. doi: 10.1021/cr980032t
-
[2]
(2) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Edit. 2000, 39, 3772. doi: 10.1002/1521-3773(20001103)39: 21<3772: : AIDANIE3772>3.0.CO;2-5
-
[3]
(3) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. doi: 10.1021/cr010338r
-
[4]
(4) Zhang, X. P.; Zhang, X. C.; Dong, H. F.; Zhao, Z. J.; Zhang, S.J.; Huang, Y. Energy Environ. Sci. 2012, 5, 6668. doi: 10.1039/c2ee21152a
-
[5]
(5) García, S.; Larriba, M.; García, J.; Torrecilla, J. S.; Rodríguez, F. J. Chem. Eng. Data. 2010, 56, 113. doi: 10.1021/je100982h
-
[6]
(6) Wang, J.; Sun, G.; Yu, L.; Wu, F.; Guo, X. Bioresour. Technol.2013, 128, 156. doi: 10.1016/j.biortech.2012.10.098
-
[7]
(7) Mäki-Arvelaa, P.; Anugwom, I.; Virtanen, P.; Sjöholm, R.; Mikkola, J. P. Industrial Crops and Products 2010, 32 (3), 175. doi: 10.1016/j.indcrop.2010.04.005
-
[8]
(8) Yue, C. B.; Mao, A. Q.; Wei, Y. Y.; Lu, M. J. Catal. Commun.2008, 9, 1571. doi: 10.1016/j.catcom.2008.01.002
-
[9]
(9) Ying, A. G.; Liu, L.; Wu, G. F.; Chen, G.; Chen, X. Z.; Ye, W.D. Tetrahedron Lett. 2009, 50, 1653. doi: 10.1016/j.tetlet.2009.01.123
-
[10]
(10) Jiang, T.; Gao, H. X.; Han, B. X.; Zhao, G. Y.; Chang, Y. H.; Wu, W. Z.; Gao, L.; Yang, G. Y. Tetrahedron Lett. 2004, 45, 2699. doi: 10.1016/j.tetlet.2004.01.129
-
[11]
(11) Zhao, H.; Gary, A. B.; Song, Z. Y.; Olarongbe, O.; Tanisha, C.; Darkeysha, P. Green Chemistry 2008, 10 (6), 696. doi: 10.1039/b801489b
-
[12]
(12) Liang, S. G.; Liu, H. Z.; Zhou, Y. X.; Jiang, T.; Han, B. X.New J. Chem. 2010, 34, 2534. doi: 10.1039/c0nj00502a
-
[13]
(13) Cao, Y.; Wu, J.; Zhang, J.; Li, H. Q.; Zhang, Y.; He, J. S.Chem. Eng. J. 2009, 147, 13. doi: 10.1016/j.cej.2008.11.011
-
[14]
(14) Tao, D. J.; Ouyang, F.; Li, Z. M.; Hu, N.; Yang, Z.; Chen, X. S.Industrial & Engineering Chemistry Research 2013, 52 (48), 17111. doi: 17111. 10.1021/ie402250e
-
[15]
(15) Muhammad, N.; Hossain, M. I.; Man, Z.; El-Harbawi, M.; Bustam, M. A.; Noaman, Y. A.; Alitheen, N. B. M.; Hefter, G.; Yin, C. Y. J. Chem. Eng. Data 2012, 57, 2191. doi: 10.1021/je300086w
-
[16]
(16) Talavera-Prietoa, N. M. C.; Ferreiraa, A. G. M.; Simões, P. N.; Carvalho, P. J.; Mattedi, S.; Coutinho, J. A. P. J. Chem. Thermodyn. 2014, 68, 221. doi: 10.1016/j.jct.2013.09.010
-
[17]
(17) Xu, A.; Zhang, Y.; Li, Z.; Wang, J. J. Chem. Eng. Data 2012, 57 (11), 3102. doi: 10.1021/je300507h
-
[18]
(18) Xu, A.; Wang, J.; Zhang, Y. J.; Chen, Q. T. Industrial & Engineering Chemistry Research 2012, 51 (8), 3458. doi: 10.1021/ie201345t
-
[19]
(19) Li, C.; Yang, H. X.; Liu, R. J.; Yang, Q.; Tong, J.; Yang, J. Z.Acta Phys. -Chim. Sin. 2015, 31 (1), 11. [李驰, 杨宏旭, 刘入境, 杨奇, 佟静, 杨家振. 物理化学学报, 2015, 31 (1), 11.] doi: 10.3866/PKU.WHXB201411063
-
[20]
(20) Li, C. P.; Li, Z.; Zou, B. X.; Liu, Q. S.; Liu, X. X. Acta Phys. -Chim. Sin. 2013, 29 (10), 2157. [李长平, 李琢, 邹本雪, 刘青山, 刘晓霞. 物理化学学报, 2013, 29 (10), 2157.] doi: 10.3866/PKU.WHXB201307293
-
[21]
(21) Guan, W.; Ma, X. X.; Li, L.; Tong, J.; Fang, D. W; Yang, J. Z.J. Phys. Chem. B 2011, 115, 12915. doi: 10.1021/jp207882t
-
[22]
(22) Tong, J.; Ma, X.; Kong, Y. X.; Chen, Y.; Guan, W.; Yang, J. Z.J. Phys. Chem. B 2012, 116, 5971. doi: 10.1021/jp301985g
-
[23]
(23) Ma, X. X.; Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan, W. Industrial & Engineering Chemistry Research 2013, 52, 9490. doi: 10.1021/ie401130d
-
[24]
(24) Muhammad, N.; Man, Z. B.; Bustam, M. A.; Mutalib, M. I. A.; Wilfred, C. D.; Rafiq, S. J. Chem. Eng. Data 2011, 56, 3157. doi: 10.1021/je2002368
-
[25]
(25) Zhang, X. M.; Huang, K.; Xia, S.; Chen, Y. L.; Wu, Y. T.; Hu, X. B. Chem. Eur. J. 2009, 274, 30. doi: 10.1016/j.cej.2015.03.052
-
[26]
(26) Wang, Z. X.; Chen, J. S.; Gu, M. X.; He, G. T.; Dai, P. F.; Li, M. Journal of Functional Materials 2012, 16 (43), 2251. [王仲勋, 陈吉胜, 谷明信, 何国田, 戴鹏飞, 李明. 功能材料, 2012, 16 (43), 2251.] doi: 10.3969/j.issn.1001-9731.2012.16.032
-
[27]
(27) Liu, Q. S.; Yan, P. F.; Yang, M.; Tan, Z. C.; Li, C. P.; Welz-Biermann, U. Acta Phys. -Chim. Sin. 2011, 27 (12), 2762. [刘青山, 颜佩芳, 杨淼, 谭志诚, 李长平, Welz-Biermann, U.物理化学学报, 2011, 27 (12), 2762.] doi: 10.3866/PKU.WHXB20112762
-
[28]
(28) Machanová, K.; Boisset, A.; Sedláková, Z.; Anouti, M.; Bendová, M.; Jacquemin, J. J. Chem. Eng. Data 2012, 57, 2227. doi: 10.1021/je300108z
-
[29]
(29) Ziyada, A. K.; Bustam, M. A.; Wilfred, C. D.; Murugesan, T.J. Chem. Eng. Data 2011, 56, 2343. doi: 10.1021/je101316g
-
[30]
(30) Yunus, N. M.; Mutalib, M. I. A.; Man, Z.; Bustam, M. A.; Murugesan, T. J. Chem. Thermodyn. 2010, 42, 491. doi: 10.1016/j.jct.2009.11.004
-
[31]
(31) Gu, Z.; Brennecke, J. F. J. Chem. Eng. Data 2002, 47, 339. doi: 10.1021/je010242u
-
[32]
(32) Tariq, M.; Forte, A. S.; Gomes, F. C.; Lopes, N. C.; Rebelo, P.N. J. Chem. Thermodyn. 2009, 41, 790. doi: 10.1016/j.jct.2009.01.012
-
[33]
(33) Wang, C. M.; Luo, H. M.; Li, H. R.; Zhu, X.; Yu, B.; Dai, S.Chem. Eur. J. 2012, 18, 2153 . doi: 10.1002/chem.201103092
-
[34]
(34) Wang, C. M.; Luo, H. M.; Luo, X. Y.; Li, H. R.; Dai, S. Green Chem. 2010, 12, 2019. doi: 10.1039/c0gc00070a
-
[35]
(35) Jiang, Y. Y.; Wang, G. N.; Zhou. Z.; Wu, Y. T.; Geng. J.; Zhang, Z. B. Chemical Communications 2008, 4, 505. doi: 0.1039/B713648J
-
[36]
(36) Zhang, Y.; Wu, Z. K.; Chen, S. L.; Yu, P.; Luo, Y. B. Industrial & Engineering Chemistry Research 2013, 52 (18), 6069. doi: 10.1021/ie302928v
-
[1]
-
-
[1]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[2]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[3]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[6]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[7]
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
-
[8]
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
-
[9]
Hongmei Zhao , Ziqiang Lu , Song Li , Xingyu Li , Chengting Zi , Xingli Fan , Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006
-
[10]
Youjun Fan , Dandan Cai , Wei Chen , Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123
-
[11]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[12]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[13]
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030
-
[14]
Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054
-
[15]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[16]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[17]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[18]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[19]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[20]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(346)
- HTML views(13)