Citation: HONG Qi-Liang, DONG Yi-Hui, ZHUANG Wei, RAO Chao, LIU Chang. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 638-646. doi: 10.3866/PKU.WHXB201512181
-
Mesoporous TiO2 was prepared by calcinating H2Ti205 at 773.15 K. The sample was characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis. The adsorption behavior and mechanism of mesoporous TiO2 for lysozyme were investigated by isothermal adsorption experiments. The results show that the equilibrium experimental data were correlated with the Langmuir isotherm equation. The adsorption capacity first increased and then decreased with increasing pH value. The capacity showed a maximum value of 72.5 mg·g-1 when the pH value was 7.2. Lysozyme adsorbed on mesoporous TiO2 was extremely stable, and its amount on mesoporous TiO2 maintained 81.6% of its initial value after five adsorption and regeneration cycles. Furthermore, kinetic analysis was conducted using pseudo-first and pseudo-second order models. The adsorption of lysozyme on mesoporous TiO2 was described well by the pseudo-second order rate equation. The rate-determining step of the adsorption was the combined action of film diffusion and intraparticle diffusion. The adsorption thermodynamic analysis suggested ΔG0 < 0, ΔH0 > 0, and ΔS0 > 0, which indicated that the adsorption was a spontaneous and endothermic process with entropy increased.
-
Keywords:
- Mesoporous TiO2,
- Lysozyme,
- Adsorption,
- Kinetics,
- Thermodynamics
-
-
[1]
(1) Andre, E.; Lutz, M.; Darrell, V.; Tian, X.; Eric, M.; Ponisseril, S.; Fred, K.; Vince, C.; Mike, T. Nat. Mater. 2009, 8, 543. doi: 10.1038/nmat2442
-
[2]
(2) Larson, T. A.; Joshi, P. P.; Sokolov, K. ACS Nano 2012, 6, 9182. doi: 10.1021/nn3035155
-
[3]
(3) Zhen, X.; Wang, X.; Xie, C.; Wu, W.; Jiang, X. Q.Biomaterials 2013, 34, 1372. doi: 10.1016/j.biomaterials.2012.10.061
-
[4]
(4) Shao, M. F.; Ning, F. Y.; Zhao, J.W.; Wei, M.; Evans, D. G.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071. doi: 10.1021/ja2086323
-
[5]
(5) Lv, Y. J.; Lu, G. Z.; Wang, Y. Q.; Guo, Y. L.; Guo, Y.; Zhang, Z. G.; Wang, Y. S.; Liu, X. H. Adv. Funct. Mater. 2007, 17, 2160. doi: 10.1002/adfm.200600505
-
[6]
(6) Wu, Z. X.; Zhao, D. Y. Chem. Commun. 2011, 47, 3332. doi: 10.1039/c0cc04909c
-
[7]
(7) Díaz, J. F.; Balkus, K. J. J. Mol. Catal. B: Enzym. 1996, 2, 115. doi: 10.1016/S1381-1177(96)00017-3
-
[8]
(8) Takimoto, A.; Shiomi, T.; Ino, K. Microporous Mesoporous Mat. 2008, 116, 601. doi: 10.1016/j.micromeso.2008.05.046
-
[9]
(9) Wang, A. M.; Liu, M. Q.; Wang, H. J. Biosci. Bioeng. 2008, 106, 286. doi: 10.1263/jbb.106.286
-
[10]
(10) Rosenholm, J. M.; Sahlgren, C.; Linden, M. Nanoscale 2010, 2, 1870. doi: 10.1039/c0nr00156b
-
[11]
(11) Blin, J. L.; Su, B. L. Langmuir 2002, 18, 5303. doi: 10.1021/la020042w
-
[12]
(12) Fuertes, A. B.; Valle-Vigon, P.; Sevilla, M. J. Colloid Interface Sci. 2010, 349, 173. doi: 10.1016/j.jcis.2010.05.041
-
[13]
(13) Jiang, Y. J.; Sun, Q. Y.; Jiang, Z. Y. Mater. Sci. Eng. C 2009, 29, 328. doi: 10.1016/j.msec.2008.07.006
-
[14]
(14) Bao, N. Z.; Shen, L. M.; Feng, X.; Lu, X. H. J. Am. Ceram.Soc. 2004, 87, 326. doi: 10.1111/j.1551-2916.2004.00326.x
-
[15]
(15) He, M.; Feng, X.; Lu, X. H.; Ji, X. Y.; Liu, C.; Bao, N. Z.; Xie, J.W. J. Chem. Eng. Jpn. 2003, 36, 1259. doi: 10.1252/jcej.36.1259
-
[16]
(16) Castrillo, P. D.; Olmos, D.; Amador, D. R. J. Colloid Interface Sci. 2007, 308, 318. doi: 10.1016/j.jcis.2007.01.022
-
[17]
(17) Yang, Z. H.; Wang, Y. F.; Li, L. C.; Wang, C. S.; Lu, X. H.Journal of Nanjing Tech. University 2012, 34, 7. [杨祝红, 王艳芳, 李力成, 王昌松, 陆小华. 南京工业大学学报, 2012, 34, 7.]
-
[18]
(18) Li, Q. N.; Wang, X. M.; Lu, X. H.; Tian, H. E.; Jiang, H.; Lv, G.; Guo, D. D.; Wu, C. H.; Chen, B. A. Biomaterials 2009, 30, 4708. doi: 10.1016/j.biomaterials.2009.05.015
-
[19]
(19) Wang, H. Q.; Yao, Z.; Sun, Y.; Zhou, Z.; Xiong, Q.; Zhong, Z.X. Biotechnol. Bioprocess Eng. 2014, 19, 304. doi: 10.1007/s12257-013-0675-8
-
[20]
(20) Dong, Y. H.; An, R.; Zhuang, W.; Yao, Z.; Zhu, Y. D.; Liu, C.; Lu, X. H. Journal of Chemical Industry and Engineering2014, 65, 1750. [董依慧, 安蓉, 庄伟, 姚忠, 朱育丹, 刘畅, 陆小华. 化工学报, 2014, 65, 1750.] doi: 10.3969/j.issn.0438-1157.2014.05.027
-
[21]
(21) Ravi, S. S.; Monoj, K. M. Korean J. Chem. Eng. 2012, 29, 1782. doi: 10.1007/s11814-012-0092-2
-
[22]
(22) Bhattacharyya, M. S.; Hiwale, P.; Piras, M.; Medda, L.; Steri, D.; Piludu, M.; Salis, A.; Monduzzi, M. J. Phys. Chem. C2010, 114, 19928. doi: 10.1021/jp1078218
-
[23]
(23) Wang, D.; Zhao, J.; Chen, B.; Zhu, C. J. Phys.: Condens.Matter 2008, 20, 085212. doi: 10.1088/0953-8984/20/8/085212
-
[24]
(24) Li, X. N.; Xu, Q. Y.; Han, G. M.; Zhu, W. Q.; Chen, Z. H.; He, X. B.; Tian, X. J. J. Hazard. Mater. 2009, 165, 469. doi: 10.1016/j.jhazmat.2008.10.013
-
[25]
(25) Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M. S. J. Colloid Interface Sci. 2008, 320, 15. doi: 10.1016/j.jcis.2007.08.012
-
[26]
(26) Su, T. J.; Lu, J. R.; Thomas, R. K.; Cui, Z. F.; Penfold, J.J. Colloid Interface Sci. 1998, 203, 419. doi: 10.1006/jcis.1998.5545
-
[27]
(27) Vander, V. M.; Norde, W.; Stuart, M. C. Colloids Surf. B 2004, 35, 33. doi: 10.1016/j.colsurfb.2004.02.005
-
[28]
(28) Fu, H. Y.; Gao, B. J.; Niu, Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359. [付红艳, 高保娇, 牛庆媛. 物理化学学报, 2010, 26, 359.] doi: 10.3866/PKU.WHXB20100207
-
[29]
(29) Kitagawa, H.; Suzuki, I. The Fundamentals and Design for Adsorption; Chemical Industry Press: Beijing, 1983; pp 48-50;translated by Lu, Z. L. [Kitagawa, H.; Suzuki, I. 吸附的基础与设计. 鹿政理, 译. 北京: 化学工业出版社, 1983: 48-50.]
-
[30]
(30) Sun, Q.; Yang, L. Water Res. 2003, 37, 1535. doi: 10.1016/S0043-1354(02)00520-1
-
[31]
(31) Karaca, S.; Gurses, A.; Ejder, M.; Acikyildiz, M. J. Colloid Interface Sci. 2004, 277, 257. doi: 10.1016/j.jcis.2004.04.042
-
[32]
(32) Yang, X, Y.; Al-Duri, B. J. Colloid Interface Sci. 2005, 287, 25. doi: 10.1016/j.jcis.2005.01.093
-
[33]
(33) Lorenc-Grabowska, E.; Gryglewicz, G. J. Colloid Interface Sci. 2005, 284, 416. doi: 10.1016/j.jcis.2004.10.031
-
[34]
(34) Shi, N.; Gao, B. J.; Yang, Q. Acta Phys. -Chim. Sin. 2014, 30, 2168. [史楠, 高保娇, 杨青. 物理化学学报, 2014, 30, 2168.] doi: 10.3866/PKU.WHXB201409151
-
[35]
(35) Zhou, L. C.; Meng, X. G.; Li, J. M.; Hu, W.; Liu, B.; Du, J.Acta Phys. -Chim. Sin. 2012, 28, 1615. [周良春, 孟祥光, 李建梅, 胡伟, 刘波, 杜娟. 物理化学学报, 2012, 28, 1615.] doi: 10.3866/PKU.WHXB201204282
-
[36]
(36) Wojciech, P.; Wladyslaw, R.; Anita, P. Adv. Colloid Interface Sci. 2009, 152, 2. doi: 10.1016/j.cis.2009.07.009
-
[37]
(37) Salama, M. A.; Burk, R. C. Appl. Surf. Sci. 2008, 255, 1975. doi: 10.1016/j.apsusc.2008.06.168
-
[38]
(38) Kuo, C. Y.; Wu, C. H.; Wu, J. Y. J. Colloid Interface Sci. 2008, 327, 308. doi: 10.1016/j.jcis.2008.08.038
-
[1]
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[6]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[7]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[8]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[9]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[10]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[11]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[12]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[13]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[14]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[15]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[18]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[19]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[20]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(313)
- HTML views(20)