Citation: HONG Qi-Liang, DONG Yi-Hui, ZHUANG Wei, RAO Chao, LIU Chang. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 638-646. doi: 10.3866/PKU.WHXB201512181 shu

Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide

  • Corresponding author: LIU Chang, 
  • Received Date: 14 September 2015
    Available Online: 14 December 2015

    Fund Project: 国家重点基础研究发展计划项目(2013CB733501) (2013CB733501)国家自然科学基金(21136004,21476106,21506090) (21136004,21476106,21506090)江苏省自然科学基金(BK20130929) (BK20130929)

  • Mesoporous TiO2 was prepared by calcinating H2Ti205 at 773.15 K. The sample was characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis. The adsorption behavior and mechanism of mesoporous TiO2 for lysozyme were investigated by isothermal adsorption experiments. The results show that the equilibrium experimental data were correlated with the Langmuir isotherm equation. The adsorption capacity first increased and then decreased with increasing pH value. The capacity showed a maximum value of 72.5 mg·g-1 when the pH value was 7.2. Lysozyme adsorbed on mesoporous TiO2 was extremely stable, and its amount on mesoporous TiO2 maintained 81.6% of its initial value after five adsorption and regeneration cycles. Furthermore, kinetic analysis was conducted using pseudo-first and pseudo-second order models. The adsorption of lysozyme on mesoporous TiO2 was described well by the pseudo-second order rate equation. The rate-determining step of the adsorption was the combined action of film diffusion and intraparticle diffusion. The adsorption thermodynamic analysis suggested ΔG0 < 0, ΔH0 > 0, and ΔS0 > 0, which indicated that the adsorption was a spontaneous and endothermic process with entropy increased.
  • 加载中
    1. [1]

      (1) Andre, E.; Lutz, M.; Darrell, V.; Tian, X.; Eric, M.; Ponisseril, S.; Fred, K.; Vince, C.; Mike, T. Nat. Mater. 2009, 8, 543. doi: 10.1038/nmat2442

    2. [2]

      (2) Larson, T. A.; Joshi, P. P.; Sokolov, K. ACS Nano 2012, 6, 9182. doi: 10.1021/nn3035155

    3. [3]

      (3) Zhen, X.; Wang, X.; Xie, C.; Wu, W.; Jiang, X. Q.Biomaterials 2013, 34, 1372. doi: 10.1016/j.biomaterials.2012.10.061

    4. [4]

      (4) Shao, M. F.; Ning, F. Y.; Zhao, J.W.; Wei, M.; Evans, D. G.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071. doi: 10.1021/ja2086323

    5. [5]

      (5) Lv, Y. J.; Lu, G. Z.; Wang, Y. Q.; Guo, Y. L.; Guo, Y.; Zhang, Z. G.; Wang, Y. S.; Liu, X. H. Adv. Funct. Mater. 2007, 17, 2160. doi: 10.1002/adfm.200600505

    6. [6]

      (6) Wu, Z. X.; Zhao, D. Y. Chem. Commun. 2011, 47, 3332. doi: 10.1039/c0cc04909c

    7. [7]

      (7) Díaz, J. F.; Balkus, K. J. J. Mol. Catal. B: Enzym. 1996, 2, 115. doi: 10.1016/S1381-1177(96)00017-3

    8. [8]

      (8) Takimoto, A.; Shiomi, T.; Ino, K. Microporous Mesoporous Mat. 2008, 116, 601. doi: 10.1016/j.micromeso.2008.05.046

    9. [9]

      (9) Wang, A. M.; Liu, M. Q.; Wang, H. J. Biosci. Bioeng. 2008, 106, 286. doi: 10.1263/jbb.106.286

    10. [10]

      (10) Rosenholm, J. M.; Sahlgren, C.; Linden, M. Nanoscale 2010, 2, 1870. doi: 10.1039/c0nr00156b

    11. [11]

      (11) Blin, J. L.; Su, B. L. Langmuir 2002, 18, 5303. doi: 10.1021/la020042w

    12. [12]

      (12) Fuertes, A. B.; Valle-Vigon, P.; Sevilla, M. J. Colloid Interface Sci. 2010, 349, 173. doi: 10.1016/j.jcis.2010.05.041

    13. [13]

      (13) Jiang, Y. J.; Sun, Q. Y.; Jiang, Z. Y. Mater. Sci. Eng. C 2009, 29, 328. doi: 10.1016/j.msec.2008.07.006

    14. [14]

      (14) Bao, N. Z.; Shen, L. M.; Feng, X.; Lu, X. H. J. Am. Ceram.Soc. 2004, 87, 326. doi: 10.1111/j.1551-2916.2004.00326.x

    15. [15]

      (15) He, M.; Feng, X.; Lu, X. H.; Ji, X. Y.; Liu, C.; Bao, N. Z.; Xie, J.W. J. Chem. Eng. Jpn. 2003, 36, 1259. doi: 10.1252/jcej.36.1259

    16. [16]

      (16) Castrillo, P. D.; Olmos, D.; Amador, D. R. J. Colloid Interface Sci. 2007, 308, 318. doi: 10.1016/j.jcis.2007.01.022

    17. [17]

      (17) Yang, Z. H.; Wang, Y. F.; Li, L. C.; Wang, C. S.; Lu, X. H.Journal of Nanjing Tech. University 2012, 34, 7. [杨祝红, 王艳芳, 李力成, 王昌松, 陆小华. 南京工业大学学报, 2012, 34, 7.]

    18. [18]

      (18) Li, Q. N.; Wang, X. M.; Lu, X. H.; Tian, H. E.; Jiang, H.; Lv, G.; Guo, D. D.; Wu, C. H.; Chen, B. A. Biomaterials 2009, 30, 4708. doi: 10.1016/j.biomaterials.2009.05.015

    19. [19]

      (19) Wang, H. Q.; Yao, Z.; Sun, Y.; Zhou, Z.; Xiong, Q.; Zhong, Z.X. Biotechnol. Bioprocess Eng. 2014, 19, 304. doi: 10.1007/s12257-013-0675-8

    20. [20]

      (20) Dong, Y. H.; An, R.; Zhuang, W.; Yao, Z.; Zhu, Y. D.; Liu, C.; Lu, X. H. Journal of Chemical Industry and Engineering2014, 65, 1750. [董依慧, 安蓉, 庄伟, 姚忠, 朱育丹, 刘畅, 陆小华. 化工学报, 2014, 65, 1750.] doi: 10.3969/j.issn.0438-1157.2014.05.027

    21. [21]

      (21) Ravi, S. S.; Monoj, K. M. Korean J. Chem. Eng. 2012, 29, 1782. doi: 10.1007/s11814-012-0092-2

    22. [22]

      (22) Bhattacharyya, M. S.; Hiwale, P.; Piras, M.; Medda, L.; Steri, D.; Piludu, M.; Salis, A.; Monduzzi, M. J. Phys. Chem. C2010, 114, 19928. doi: 10.1021/jp1078218

    23. [23]

      (23) Wang, D.; Zhao, J.; Chen, B.; Zhu, C. J. Phys.: Condens.Matter 2008, 20, 085212. doi: 10.1088/0953-8984/20/8/085212

    24. [24]

      (24) Li, X. N.; Xu, Q. Y.; Han, G. M.; Zhu, W. Q.; Chen, Z. H.; He, X. B.; Tian, X. J. J. Hazard. Mater. 2009, 165, 469. doi: 10.1016/j.jhazmat.2008.10.013

    25. [25]

      (25) Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M. S. J. Colloid Interface Sci. 2008, 320, 15. doi: 10.1016/j.jcis.2007.08.012

    26. [26]

      (26) Su, T. J.; Lu, J. R.; Thomas, R. K.; Cui, Z. F.; Penfold, J.J. Colloid Interface Sci. 1998, 203, 419. doi: 10.1006/jcis.1998.5545

    27. [27]

      (27) Vander, V. M.; Norde, W.; Stuart, M. C. Colloids Surf. B 2004, 35, 33. doi: 10.1016/j.colsurfb.2004.02.005

    28. [28]

      (28) Fu, H. Y.; Gao, B. J.; Niu, Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359. [付红艳, 高保娇, 牛庆媛. 物理化学学报, 2010, 26, 359.] doi: 10.3866/PKU.WHXB20100207

    29. [29]

      (29) Kitagawa, H.; Suzuki, I. The Fundamentals and Design for Adsorption; Chemical Industry Press: Beijing, 1983; pp 48-50;translated by Lu, Z. L. [Kitagawa, H.; Suzuki, I. 吸附的基础与设计. 鹿政理, 译. 北京: 化学工业出版社, 1983: 48-50.]

    30. [30]

      (30) Sun, Q.; Yang, L. Water Res. 2003, 37, 1535. doi: 10.1016/S0043-1354(02)00520-1

    31. [31]

      (31) Karaca, S.; Gurses, A.; Ejder, M.; Acikyildiz, M. J. Colloid Interface Sci. 2004, 277, 257. doi: 10.1016/j.jcis.2004.04.042

    32. [32]

      (32) Yang, X, Y.; Al-Duri, B. J. Colloid Interface Sci. 2005, 287, 25. doi: 10.1016/j.jcis.2005.01.093

    33. [33]

      (33) Lorenc-Grabowska, E.; Gryglewicz, G. J. Colloid Interface Sci. 2005, 284, 416. doi: 10.1016/j.jcis.2004.10.031

    34. [34]

      (34) Shi, N.; Gao, B. J.; Yang, Q. Acta Phys. -Chim. Sin. 2014, 30, 2168. [史楠, 高保娇, 杨青. 物理化学学报, 2014, 30, 2168.] doi: 10.3866/PKU.WHXB201409151

    35. [35]

      (35) Zhou, L. C.; Meng, X. G.; Li, J. M.; Hu, W.; Liu, B.; Du, J.Acta Phys. -Chim. Sin. 2012, 28, 1615. [周良春, 孟祥光, 李建梅, 胡伟, 刘波, 杜娟. 物理化学学报, 2012, 28, 1615.] doi: 10.3866/PKU.WHXB201204282

    36. [36]

      (36) Wojciech, P.; Wladyslaw, R.; Anita, P. Adv. Colloid Interface Sci. 2009, 152, 2. doi: 10.1016/j.cis.2009.07.009

    37. [37]

      (37) Salama, M. A.; Burk, R. C. Appl. Surf. Sci. 2008, 255, 1975. doi: 10.1016/j.apsusc.2008.06.168

    38. [38]

      (38) Kuo, C. Y.; Wu, C. H.; Wu, J. Y. J. Colloid Interface Sci. 2008, 327, 308. doi: 10.1016/j.jcis.2008.08.038

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

Metrics
  • PDF Downloads(0)
  • Abstract views(314)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return