Citation: YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 313-320. doi: 10.3866/PKU.WHXB201512161
-
Urea is known for protein denaturation. The counteracting effect of trimethylamine-N-oxide (TMAO) against urea-induced protein denaturation is also well established. However, what is largely unknown is the mechanism TMAO counteracts urea. In this article, the hydration of the interior of a simple single-walled carbon nanotube in a urea/TMAO mixture is studied as a model system for hydrophobic hydration using molecular dynamic simulations. The results show that TMAO counteracts the hydration effect of urea to the nanotube interior through strong interactions among TMAO, water, and urea. The strong interactions of TMAO and water stabilize the water structure, which counteracts the effects of urea indirectly.
-
Keywords:
- Urea,
- Trimethylamine-N-oxide,
- Carbon nanotube,
- Hydration,
- Molecular dynamics
-
-
[1]
(1) Kresheck, G. C.; Scheraga, H. A. J. Phys. Chem. 1965, 69 (5), 1704. doi: 10.1021/j100889a043
-
[2]
(2) Camilloni, C.; Rocco, A. G.; Eberini, I.; Gianazza, E.; Broglia, R. A.; Tiana, G. Biophys. J. 2008, 94 (12), 4654. doi: 10.1529/biophysj.107.125799
-
[3]
(3) Moglich, A.; Krieger, F.; Kiefhaber, T. J. Mol. Biol. 2005, 345 (1), 153. doi: 10.1016/j.jmb.2004.10.036
-
[4]
(4) Das, A.; Mukhopadhyay, C. J. Phys. Chem. B 2008, 112 (26), 7903. doi: 10.1021/jp800370e
-
[5]
(5) Soper, A. K.; Finney, J. L. Phys. Rev. Lett. 1993, 71 (26), 4346. doi: 10.1103/PhysRevLett.71.4346
-
[6]
(6) Turner, J.; Soper, A. K.; Finney, J. L. Mol. Phys. 1990, 70 (4), 679. doi: 10.1080/00268979000102661
-
[7]
(7) Bolen, D. W.; Rose, G. D. Annu. Rev. Biochem. 2008, 77, 339. doi: 10.1146/annurev.biochem.77.061306.131357
-
[8]
(8) Stumpe, M. C.; Grubmuller, H. J. Am. Chem. Soc. 2007, 129 (51), 16126. doi: 10.1021/ja076216j
-
[9]
(9) Stumpe, M. C.; Grubmuller, H. J. Phys. Chem. B 2007, 111 (22), 6220. doi: 10.1021/jp066474n
-
[10]
(10) Canchi, D. R.; Garcia, A. E. Annual Review of Physical Chemistry 2013, 64, 273. doi: 10.1146/annurev-physchem-040412-110156
-
[11]
(11) Lin, T. Y.; Timasheff, S. N. Biochemistry 1994, 33 (42), 12695. doi: 10.1021/bi00208a021
-
[12]
(12) Auton, M.; Bolen, D. W. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (42), 15065. doi: 10.1073/pnas.0507053102
-
[13]
(13) Gluick, T. C.; Yadav, S. J. Am. Chem. Soc. 2003, 125 (15), 4418. doi: 10.1021/ja0292997
-
[14]
(14) Venkatesu, P.; Lin, H. M.; Lee, M. J. Thermochim. Acta 2009, 491 (1–2), 20. doi: 10.1016/j.tca.2009.02.017
-
[15]
(15) Venkatesu, P.; Lee, M. J.; Lin, H. M. J. Phys. Chem. B 2009, 113 (15), 5327. doi: 10.1021/jp8113013
-
[16]
(16) Krywka, C.; Sternemann, C.; Paulus, M.; Tolan, M.; Royer, C.; Winter, R. ChemPhysChem 2008, 9 (18), 2809. doi: 10.1002/cphc.200800522
-
[17]
(17) Robinson, D. R.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87 (11), 2462. doi: 10.1021/ja01089a028
-
[18]
(18) Lim, W. K.; Rosgen, J.; Englander, S. W. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (8), 2595. doi: 10.1073/pnas.0812588106
-
[19]
(19) Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (44), 16928. doi: 10.1073/pnas.0808427105
-
[20]
(20) Das, P.; Zhou, R. H. J. Phys. Chem. B 2010, 114 (16), 5427. doi: 10.1021/jp911444q
-
[21]
(21) Zangi, R.; Zhou, R. H.; Berne, B. J. J. Am. Chem. Soc. 2009, 131 (4), 1535. doi: 10.1021/ja807887g
-
[22]
(22) Wetlaufer, D. B.; Coffin, R. L.; Malik, S. K.; Stoller, L. J. Am. Chem. Soc. 1964, 86 (3), 508. doi: 10.1021/ja01057a045
-
[23]
(23) Finer, E. G.; Franks, F.; Tait, M. J. J. Am. Chem. Soc. 1972, 94 (13), 4424. doi: 10.1021/ja00768a004
-
[24]
(24) Das, A.; Mukhopadhyay, C. J. Phys. Chem. B 2009, 113 (38), 12816. doi: 10.1021/jp906350s
-
[25]
(25) Idrissi, A.; Cinar, E.; Longelin, S.; Damay, P. J. Mol. Liq. 2004, 110 (1–3), 201. doi: 10.1016/j.molliq.2003.09.015
-
[26]
(26) Frank, H. S.; Franks, F. J. Chem. Phys. 1968, 48 (10), 4746. doi: 10.1063/1.1668057
-
[27]
(27) Zou, Q.; Bennion, B. J.; Daggett, V.; Murphy, K. P. J. Am. Chem. Soc. 2002, 124 (7), 1192. doi: 10.1021/ja004206b
-
[28]
(28) Sarma, R.; Paul, S. J. Chem. Phys. 2011, 135 (17), 174501. doi: 10.1063/1.3655672
-
[29]
(29) Koishi, T.; Yasuoka, K.; Wilow, S. Y.; Fujikawa, S.; Zeng, X. C. J. Chem. Theory Comput. 2013, 9 (6), 2540. doi: 10.1021/ct3010968
-
[30]
(30) Sarma, R.; Paul, S. J. Phys. Chem. B 2012, 116 (9), 2831. doi: 10.1021/jp2104402
-
[31]
(31) Yang, L. J.; Gao, Y. Q. J. Am. Chem. Soc. 2010, 132 (2), 842. doi: 10.1021/ja9091825
-
[32]
(32) Wei, H. Y.; Fan, Y. B.; Gao, Y. Q. J. Phys. Chem. B 2010, 114 (1), 557. doi: 10.1021/jp9084926
-
[33]
(33) Wei, H. Y.; Yang, L. J.; Gao, Y. Q. J. Phys. Chem. B 2010, 114 (36), 11820. doi: 10.1021/jp103770y
-
[34]
(34) Shao, Q.; Fan, Y. B.; Yang, L. J.; Gao, Y. Q. J. Chem. Phys. 2012, 136 (11), 115101. doi: 10.1063/1.3692801
-
[35]
(35) Shao, Q.; Gao, Y. Q. J. Chem. Phys. 2012, 137 (14), 145101. doi: 10.1063/1.4757419
-
[36]
(36) Shao, Q.; Fan, Y. B.; Yang, L. J.; Gao, Y. Q. J. Chem. Theory Comput. 2012, 8 (11), 4364. doi: 10.1021/ct3002267
-
[37]
(37) Gao, Y. Q. J. Phys. Chem. B 2012, 116 (33), 9934. doi: 10.1021/jp305532h
-
[38]
(38) Xie, W. J.; Gao, Y. Q. Faraday Discuss. 2013, 160, 191. doi: 10.1039/C2FD20065A
-
[39]
(39) Xie, W. J.; Gao, Y. Q. J. Phys. Chem. Lett. 2013, 4 (24), 4247. doi: 10.1021/jz402072g
-
[40]
(40) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
-
[41]
(41) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
-
[42]
(42) Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L. J. Am. Chem. Soc. 1993, 115 (20), 9271. doi: 10.1021/ja00073a050
-
[43]
(43) Kast, K. M.; Brickmann, J.; Kast, S. M.; Berry, R. S. J. Phys. Chem. A 2003, 107 (27), 5342. doi: 10.1021/jp027336a
-
[44]
(44) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
-
[45]
(45) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397
-
[46]
(46) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23 (3), 327. doi: 10.1016/0021-9991(77)90098-5
-
[47]
(47) Hummer, G. Mol. Phys. 2007, 105 (2–3), 201. doi: 10.1080/00268970601140784
-
[48]
(48) Sarma, R.; Paul, S. J. Phys. Chem. B 2013, 117 (18), 5691. doi: 10.1021/jp401750v
-
[1]
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[6]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[7]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[17]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[18]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[19]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[20]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(559)
- HTML views(19)