Citation: NING Yan-Xiao, FU Qiang, BAO Xin-He. Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 171-182. doi: 10.3866/PKU.WHXB201512152 shu

Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals

  • Corresponding author: FU Qiang,  BAO Xin-He, 
  • Received Date: 25 October 2015
    Available Online: 14 December 2015

    Fund Project: 国家自然科学基金(21573224,21222305,21373208,21321002) (21573224,21222305,21373208,21321002)国家科技部项目(2013CB933100,2013CB834603)资助 (2013CB933100,2013CB834603)

  • Photoemission electron microscopy (PEEM)/low energy electron microscopy (LEEM) are surface techniques that can be used to image surface structure, electronic states, and surface chemistry. Important applications of the technique in catalysis, energy, nano science, and material sciences have been seen. In this paper, we briefly introduce the principle of PEEM/LEEM and the recent advances of the technique. Then, some applications of PEEM/LEEM in dynamic studies of surface physics and chemistry of two-dimensional (2D) atomic crystals are highlighted, which include the growth of 2D atomic crystals, the formation of 2D heterostructures, the intercalation of the 2D materials, and chemical reactions confined under the 2D materials. Using surface imaging, micro-region low energy electron diffraction (μ-LEED), and the intensity-voltage (I-V) curves, the kinetics of 2D material growth and reactions at the 2D material/solid interfaces can be deeply understood.

    1. [1]

      (1) Tromp, R. M.; Reuter, M. C. Ultramicroscopy 1991, 36 (1–3), 99. doi: 10.1016/0304-3991(91)90141-R

    2. [2]

      (2) Engel, W.; Kordesch, M. E.; Rotermund, H. H.; Kubala, S.; von Oertzen, A. Ultramicroscopy 1991, 36 (1–3), 148. doi: 10.1016/0304-3991(91)90146-W

    3. [3]

      (3) Bauer, E. Rep. Prog. Phys. 1994, 57 (9), 895. doi: 0034-4885/94/090895

    4. [4]

      (4) Tromp, R. M. Ibm. J. Res. Develop. 2000, 44 (4), 503. doi: 10.1147/rd.444.0503

    5. [5]

      (5) Ertl, G. Angew. Chem. Int. Edit. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480

    6. [6]

      (6) Imbihl, R. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 347. doi: 10.1016/j.elspec.2012.05.001

    7. [7]

      (7) Luer Ben, B.; Janek, J.; Gunther, S.; Kiskinova, M.; Imbihl, R. Phys. Chem. Chem. Phys. 2002, 4 (12), 2673. doi: 10.1039/B109893D

    8. [8]

      (8) Luerβen, B.; Mutoro, E.; Fischer, H.; Günther, S.; Imbihl, R.; Janek, J. Angew. Chem. Int. Edit. 2006, 45 (9), 1473. doi: 10.1002/anie.200503708

    9. [9]

      (9) Man, K. L.; Altman, M. S. J. Phys.: Condens. Matter 2012, 24 (31), 314209. doi: 10.1088/0953-8984/24/31/314209

    10. [10]

      (10) Sutter, P.; Sutter, E. Adv. Funct. Mater. 2013, 23 (20), 2617. doi: 10.1002/adfm.201203426

    11. [11]

      (11) Frazer, B. H.; Girasole, M.; Wiese, L. M.; Franz, T.; Stasio, G. D. Ultramicroscopy 2004, 99 (2–3), 87. doi: 10.1016/j.ultramic.2003.10.001

    12. [12]

      (12) Fukidome, H.; Kotsugi, M.; Nagashio, K.; Sato, R.; Ohkochi, T.; Itoh, T.; Toriumi, A.; Suemitsu, M.; Kinoshita, T. Sci. Rep. 2014, 4, 3713. doi: 10.1038/srep03713

    13. [13]

      (13) Xiong, G.; Shao, R.; Peppernick, S. J.; Joly, A. G.; Beck, K. M.; Hess, W. P.; Cai, M.; Duchene, J.; Wang, J. Y.; Wei, W. D. JOM 2010, 62 (12), 90. doi: 10.1007/s11837-010-0189-1

    14. [14]

      (14) Günther, S.; Kaulich, B.; Gregoratti, L.; Kiskinova, M. Prog. Surf. Sci. 2002, 70 (4–8), 187. doi: 10.1016/S0079-6816(02)00007-2

    15. [15]

      (15) Choi, J.; Wu, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Owens, T.; Qiu, Z. Q. Phys. Rev. Lett. 2007, 98 (20), 207205. doi: 10.1103/PhysRevLett.98.207205

    16. [16]

      (16) Chung, W. F.; Altman, M. S. Ultramicroscopy 1998, 74 (4), 237. doi: 10.1016/S0304-3991(98)00043-6

    17. [17]

      (17) Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New J. Phys. 2009, 11 (6), 063046. doi: 10.1088/1367-2630/11/6/063046

    18. [18]

      (18) Bauer, E. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 314. doi: 10.1016/j.elspec.2012.08.001

    19. [19]

      (19) Bauer, E. Ultramicroscopy 2012, 119, 18. doi: 10.1016/ j.ultramic.2011.09.006

    20. [20]

      (20) Tromp, R. M.; Hannon, J. B.; Ellis, A. W.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2010, 110 (7), 852. doi: 10.1016/j.ultramic.2010.03.005

    21. [21]

      (21) Tromp, R. M.; Hannon, J. B.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2013, 127, 25. doi: 10.1016/j.ultramic.2012.07.016

    22. [22]

      (22) Cao, N.; Fu, Q.; Bao, X. H. Bulletin of Chinese Academy of Sciences 2012, 27 (1), 103. [曹凝, 傅强, 包信和. 中国科学院院刊, 2012, 27 (1), 103.]

    23. [23]

      (23) Meyer zu Heringdorf, F. J.; Reuter, M.; Tromp, R. Nature 2001, 412 (6846), 517. doi: 10.1038/35087532

    24. [24]

      (24) Schmid, A. K.; Bartelt, N. C.; Hwang, R. Q. Science 2000, 290 (5496). doi: 10.1126/science.290.5496.1561

    25. [25]

      (25) Santos, B.; Loginova, E.; Mascaraque, A.; Schmid, A. K.; McCarty, K. F.; Figuera, J. D. L. J. Phys.: Condens. Matter 2009, 21 (31), 314011. doi: 10.1088/0953-8984/21/31/314011

    26. [26]

      (26) Grinter, D. C.; Yim, C. M.; Pang, C. L.; Santos, B.; Menteş, T. O.; Locatelli, A.; Thornton, G. J. Phys. Chem. C 2013, 117 (32), 16509. doi: 10.1021/jp405887h

    27. [27]

      (27) Qin, H.; Chen, X.; Li, l.; Sutter, P. W.; Zhou, G. Proc. Natl. Acad. Sci. 2015, 112 (2), E103. doi: 10.1073/pnas.1420690112

    28. [28]

      (28) Wu, Q.; Zdyb, R.; Bauer, E.; Altman, M. S. Phys. Rev. B 2013, 87 (10), 104410. doi: 10.1103/PhysRevB.87.104410

    29. [29]

      (29) Yang, Y.; Fu, Q.; Li, H.; Wei, M.; Xiao, J.; Wei, W.; Bao, X. ACS Nano 2015, 9 (12), 11589. doi: 10.1021/acsnano.5b05509

    30. [30]

      (30) Yeh, P. C.; Jin, W.; Zaki, N.; Zhang, D.; Sadowski, J. T.; Al-Mahboob, A.; van der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P.; Sutter, P.; Hone, J.; Osgood, R. M. Phys. Rev. B 2014, 89 (15), 155408. doi: 10.1103/PhysRevB.89.155408

    31. [31]

      (31) Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Science 2001, 292 (5520), 1357. doi: 10.1126/science.1059478

    32. [32]

      (32) Cui, Y.; Fu, Q.; Bao, X. Phys. Chem. Chem. Phys. 2010, 12 (19), 5053. doi: 10.1039/C000719F

    33. [33]

      (33) Yan, K.; Wu, D.; Peng, H.; Jin, L.; Fu, Q.; Bao, X.; Liu, Z. Nat. Commun. 2012, 3, 1280. doi: 10.1038/ncomms2286

    34. [34]

      (34) Cui, Y.; Fu, Q.; Zhang, H.; Tan, D.; Bao, X. J. Phys. Chem. C 2009, 113 (47), 20365. doi: 10.1021/jp907949a

    35. [35]

      (35) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702

    36. [36]

      (36) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343 (6167), 163. doi: 10.1126/science.1246137

    37. [37]

      (37) Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Phys. Rev. B 2008, 77 (7), 075413. doi: 10.1103/PhysRevB.77.075413

    38. [38]

      (38) Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80 (24), 245411. doi: 10.1103/PhysRevB.80.245411

    39. [39]

      (39) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877

    40. [40]

      (40) Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nat Mater. 2008, 7 (5), 406. doi: 10.1038/nmat2166

    41. [41]

      (41) Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. J. Phys. Chem. C 2012, 116 (4), 2988. doi: 10.1021/jp210206y

    42. [42]

      (42) Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Nano Lett. 2012, 12 (9), 4869. doi: 10.1021/nl302398m

    43. [43]

      (43) Geim, A.; Grigorieva, I. Nature 2013, 499 (7459), 419. doi: 10.1038/nature12385

    44. [44]

      (44) Jin, L.; Fu, Q.; Dong, A.; Ning, Y.; Wang, Z.; Bluhm, H.; Bao, X. J. Phys. Chem. C 2014, 118 (23), 12391. doi: 10.1021/jp5034855

    45. [45]

      (45) Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. J. Phys. Chem. C 2013, 117 (12), 6320. doi: 10.1021/jp400838j

    46. [46]

      (46) Mu, R.; Fu, Q.; Jin, L.; Yu, L.; Fang, G.; Tan, D.; Bao, X. Angew. Chem. Int. Edit. 2012, 51 (20), 4856. doi: 10.1002/anie.201200413

    47. [47]

      (47) Zhang, Y.; Weng, X.; Li, H.; Li, H.; Wei, M.; Xiao, J.; Liu, Z.; Chen, M.; Fu, Q.; Bao, X. Nano Lett. 2015, 15 (5), 3616. doi: 10.1021/acs.nanolett.5b01205

    48. [48]

      (48) Zhang, Y.; Wei, M.; Fu, Q.; Bao, X. Sci. Bull. 2015, 60 (18), 1572. doi: 10.1007/s11434-015-0875-z

    49. [49]

      (49) Du, Z.; Sarofim, A. F.; Longwell, J. P.; Mims, C. A. Energ. Fuel 1991, 5 (1), 214. doi: 10.1021/ef00025a035

    50. [50]

      (50) Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. J. Phys. Chem. B 1999, 103 (45), 9944. doi: 10.1021/jp9920895

    51. [51]

      (51) Starodub, E.; Bartelt, N. C.; McCarty, K. F. J. Phys. Chem. C 2010, 114 (11), 5134. doi: 10.1021/jp912139e

    52. [52]

      (52) Sutter, P.; Sadowski, J. T.; Sutter, E. A. J. Am. Chem. Soc. 2010, 132 (23), 8175. doi: 10.1021/ja102398n

    53. [53]

      (53) Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (48), 17023. doi: 10.1073/pnas.1416368111

    54. [54]

      (54) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Laurent, G.; Douillard, L.; Charra, F. Nano Lett. 2011, 11 (2), 402. doi: 10.1021/nl103007m

    55. [55]

      (55) Douillard, L.; Charra, F. J. Electron. Spectrosc. Relat. Phenom. 2013, 189 (Supplement), 24. doi: 10.1016/j.elspec.2013.03.013

    56. [56]

      (56) Mutoro, E.; Hellwig, C.; Luerssen, B.; Guenther, S.; Bessler, W. G.; Janek, J. Phys. Chem. Chem. Phys. 2011, 13 (28), 12798.
      doi: 10.1039/C1CP20361D

    57. [57]

      (57) Schmidt, T.; Groh, U.; Fink, R.; Umbach, E.; Schaff, O.; Engel, W.; Richter, B.; Kuhlenbeck, H.; Schlogl, R.; Freund, H. J.; Bradshaw, A. M.; Preikszas, D.; Hartel, P.; Spehr, R.; Rose, H.; Lilienkamp, G.; Bauer, E.; Benner, G. Surf. Rev. Lett. 2002, 9 (1), 223. doi: 10.1142/S0218625X02001811

    58. [58]

      (58) Guo, F. Z.; Wakita, T.; Shimizu, H.; Matsushita, T.; Yasue, T.; Koshikawa, T.; Bauer, E.; Kobayashi, K. J. Phys.: Condens. Matter 2005, 17 (16), S1363. doi: 10.1088/0953-8984/17/16/007

    1. [1]

      (1) Tromp, R. M.; Reuter, M. C. Ultramicroscopy 1991, 36 (1–3), 99. doi: 10.1016/0304-3991(91)90141-R

    2. [2]

      (2) Engel, W.; Kordesch, M. E.; Rotermund, H. H.; Kubala, S.; von Oertzen, A. Ultramicroscopy 1991, 36 (1–3), 148. doi: 10.1016/0304-3991(91)90146-W

    3. [3]

      (3) Bauer, E. Rep. Prog. Phys. 1994, 57 (9), 895. doi: 0034-4885/94/090895

    4. [4]

      (4) Tromp, R. M. Ibm. J. Res. Develop. 2000, 44 (4), 503. doi: 10.1147/rd.444.0503

    5. [5]

      (5) Ertl, G. Angew. Chem. Int. Edit. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480

    6. [6]

      (6) Imbihl, R. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 347. doi: 10.1016/j.elspec.2012.05.001

    7. [7]

      (7) Luer Ben, B.; Janek, J.; Gunther, S.; Kiskinova, M.; Imbihl, R. Phys. Chem. Chem. Phys. 2002, 4 (12), 2673. doi: 10.1039/B109893D

    8. [8]

      (8) Luerβen, B.; Mutoro, E.; Fischer, H.; Günther, S.; Imbihl, R.; Janek, J. Angew. Chem. Int. Edit. 2006, 45 (9), 1473. doi: 10.1002/anie.200503708

    9. [9]

      (9) Man, K. L.; Altman, M. S. J. Phys.: Condens. Matter 2012, 24 (31), 314209. doi: 10.1088/0953-8984/24/31/314209

    10. [10]

      (10) Sutter, P.; Sutter, E. Adv. Funct. Mater. 2013, 23 (20), 2617. doi: 10.1002/adfm.201203426

    11. [11]

      (11) Frazer, B. H.; Girasole, M.; Wiese, L. M.; Franz, T.; Stasio, G. D. Ultramicroscopy 2004, 99 (2–3), 87. doi: 10.1016/j.ultramic.2003.10.001

    12. [12]

      (12) Fukidome, H.; Kotsugi, M.; Nagashio, K.; Sato, R.; Ohkochi, T.; Itoh, T.; Toriumi, A.; Suemitsu, M.; Kinoshita, T. Sci. Rep. 2014, 4, 3713. doi: 10.1038/srep03713

    13. [13]

      (13) Xiong, G.; Shao, R.; Peppernick, S. J.; Joly, A. G.; Beck, K. M.; Hess, W. P.; Cai, M.; Duchene, J.; Wang, J. Y.; Wei, W. D. JOM 2010, 62 (12), 90. doi: 10.1007/s11837-010-0189-1

    14. [14]

      (14) Günther, S.; Kaulich, B.; Gregoratti, L.; Kiskinova, M. Prog. Surf. Sci. 2002, 70 (4–8), 187. doi: 10.1016/S0079-6816(02)00007-2

    15. [15]

      (15) Choi, J.; Wu, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Owens, T.; Qiu, Z. Q. Phys. Rev. Lett. 2007, 98 (20), 207205. doi: 10.1103/PhysRevLett.98.207205

    16. [16]

      (16) Chung, W. F.; Altman, M. S. Ultramicroscopy 1998, 74 (4), 237. doi: 10.1016/S0304-3991(98)00043-6

    17. [17]

      (17) Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New J. Phys. 2009, 11 (6), 063046. doi: 10.1088/1367-2630/11/6/063046

    18. [18]

      (18) Bauer, E. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 314. doi: 10.1016/j.elspec.2012.08.001

    19. [19]

      (19) Bauer, E. Ultramicroscopy 2012, 119, 18. doi: 10.1016/ j.ultramic.2011.09.006

    20. [20]

      (20) Tromp, R. M.; Hannon, J. B.; Ellis, A. W.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2010, 110 (7), 852. doi: 10.1016/j.ultramic.2010.03.005

    21. [21]

      (21) Tromp, R. M.; Hannon, J. B.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2013, 127, 25. doi: 10.1016/j.ultramic.2012.07.016

    22. [22]

      (22) Cao, N.; Fu, Q.; Bao, X. H. Bulletin of Chinese Academy of Sciences 2012, 27 (1), 103. [曹凝, 傅强, 包信和. 中国科学院院刊, 2012, 27 (1), 103.]

    23. [23]

      (23) Meyer zu Heringdorf, F. J.; Reuter, M.; Tromp, R. Nature 2001, 412 (6846), 517. doi: 10.1038/35087532

    24. [24]

      (24) Schmid, A. K.; Bartelt, N. C.; Hwang, R. Q. Science 2000, 290 (5496). doi: 10.1126/science.290.5496.1561

    25. [25]

      (25) Santos, B.; Loginova, E.; Mascaraque, A.; Schmid, A. K.; McCarty, K. F.; Figuera, J. D. L. J. Phys.: Condens. Matter 2009, 21 (31), 314011. doi: 10.1088/0953-8984/21/31/314011

    26. [26]

      (26) Grinter, D. C.; Yim, C. M.; Pang, C. L.; Santos, B.; Menteş, T. O.; Locatelli, A.; Thornton, G. J. Phys. Chem. C 2013, 117 (32), 16509. doi: 10.1021/jp405887h

    27. [27]

      (27) Qin, H.; Chen, X.; Li, l.; Sutter, P. W.; Zhou, G. Proc. Natl. Acad. Sci. 2015, 112 (2), E103. doi: 10.1073/pnas.1420690112

    28. [28]

      (28) Wu, Q.; Zdyb, R.; Bauer, E.; Altman, M. S. Phys. Rev. B 2013, 87 (10), 104410. doi: 10.1103/PhysRevB.87.104410

    29. [29]

      (29) Yang, Y.; Fu, Q.; Li, H.; Wei, M.; Xiao, J.; Wei, W.; Bao, X. ACS Nano 2015, 9 (12), 11589. doi: 10.1021/acsnano.5b05509

    30. [30]

      (30) Yeh, P. C.; Jin, W.; Zaki, N.; Zhang, D.; Sadowski, J. T.; Al-Mahboob, A.; van der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P.; Sutter, P.; Hone, J.; Osgood, R. M. Phys. Rev. B 2014, 89 (15), 155408. doi: 10.1103/PhysRevB.89.155408

    31. [31]

      (31) Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Science 2001, 292 (5520), 1357. doi: 10.1126/science.1059478

    32. [32]

      (32) Cui, Y.; Fu, Q.; Bao, X. Phys. Chem. Chem. Phys. 2010, 12 (19), 5053. doi: 10.1039/C000719F

    33. [33]

      (33) Yan, K.; Wu, D.; Peng, H.; Jin, L.; Fu, Q.; Bao, X.; Liu, Z. Nat. Commun. 2012, 3, 1280. doi: 10.1038/ncomms2286

    34. [34]

      (34) Cui, Y.; Fu, Q.; Zhang, H.; Tan, D.; Bao, X. J. Phys. Chem. C 2009, 113 (47), 20365. doi: 10.1021/jp907949a

    35. [35]

      (35) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702

    36. [36]

      (36) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343 (6167), 163. doi: 10.1126/science.1246137

    37. [37]

      (37) Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Phys. Rev. B 2008, 77 (7), 075413. doi: 10.1103/PhysRevB.77.075413

    38. [38]

      (38) Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80 (24), 245411. doi: 10.1103/PhysRevB.80.245411

    39. [39]

      (39) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877

    40. [40]

      (40) Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nat Mater. 2008, 7 (5), 406. doi: 10.1038/nmat2166

    41. [41]

      (41) Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. J. Phys. Chem. C 2012, 116 (4), 2988. doi: 10.1021/jp210206y

    42. [42]

      (42) Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Nano Lett. 2012, 12 (9), 4869. doi: 10.1021/nl302398m

    43. [43]

      (43) Geim, A.; Grigorieva, I. Nature 2013, 499 (7459), 419. doi: 10.1038/nature12385

    44. [44]

      (44) Jin, L.; Fu, Q.; Dong, A.; Ning, Y.; Wang, Z.; Bluhm, H.; Bao, X. J. Phys. Chem. C 2014, 118 (23), 12391. doi: 10.1021/jp5034855

    45. [45]

      (45) Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. J. Phys. Chem. C 2013, 117 (12), 6320. doi: 10.1021/jp400838j

    46. [46]

      (46) Mu, R.; Fu, Q.; Jin, L.; Yu, L.; Fang, G.; Tan, D.; Bao, X. Angew. Chem. Int. Edit. 2012, 51 (20), 4856. doi: 10.1002/anie.201200413

    47. [47]

      (47) Zhang, Y.; Weng, X.; Li, H.; Li, H.; Wei, M.; Xiao, J.; Liu, Z.; Chen, M.; Fu, Q.; Bao, X. Nano Lett. 2015, 15 (5), 3616. doi: 10.1021/acs.nanolett.5b01205

    48. [48]

      (48) Zhang, Y.; Wei, M.; Fu, Q.; Bao, X. Sci. Bull. 2015, 60 (18), 1572. doi: 10.1007/s11434-015-0875-z

    49. [49]

      (49) Du, Z.; Sarofim, A. F.; Longwell, J. P.; Mims, C. A. Energ. Fuel 1991, 5 (1), 214. doi: 10.1021/ef00025a035

    50. [50]

      (50) Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. J. Phys. Chem. B 1999, 103 (45), 9944. doi: 10.1021/jp9920895

    51. [51]

      (51) Starodub, E.; Bartelt, N. C.; McCarty, K. F. J. Phys. Chem. C 2010, 114 (11), 5134. doi: 10.1021/jp912139e

    52. [52]

      (52) Sutter, P.; Sadowski, J. T.; Sutter, E. A. J. Am. Chem. Soc. 2010, 132 (23), 8175. doi: 10.1021/ja102398n

    53. [53]

      (53) Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (48), 17023. doi: 10.1073/pnas.1416368111

    54. [54]

      (54) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Laurent, G.; Douillard, L.; Charra, F. Nano Lett. 2011, 11 (2), 402. doi: 10.1021/nl103007m

    55. [55]

      (55) Douillard, L.; Charra, F. J. Electron. Spectrosc. Relat. Phenom. 2013, 189 (Supplement), 24. doi: 10.1016/j.elspec.2013.03.013

    56. [56]

      (56) Mutoro, E.; Hellwig, C.; Luerssen, B.; Guenther, S.; Bessler, W. G.; Janek, J. Phys. Chem. Chem. Phys. 2011, 13 (28), 12798.
      doi: 10.1039/C1CP20361D

    57. [57]

      (57) Schmidt, T.; Groh, U.; Fink, R.; Umbach, E.; Schaff, O.; Engel, W.; Richter, B.; Kuhlenbeck, H.; Schlogl, R.; Freund, H. J.; Bradshaw, A. M.; Preikszas, D.; Hartel, P.; Spehr, R.; Rose, H.; Lilienkamp, G.; Bauer, E.; Benner, G. Surf. Rev. Lett. 2002, 9 (1), 223. doi: 10.1142/S0218625X02001811

    58. [58]

      (58) Guo, F. Z.; Wakita, T.; Shimizu, H.; Matsushita, T.; Yasue, T.; Koshikawa, T.; Bauer, E.; Kobayashi, K. J. Phys.: Condens. Matter 2005, 17 (16), S1363. doi: 10.1088/0953-8984/17/16/007

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(0)
  • Abstract views(446)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return