Citation: NING Yan-Xiao, FU Qiang, BAO Xin-He. Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 171-182. doi: 10.3866/PKU.WHXB201512152
-
Photoemission electron microscopy (PEEM)/low energy electron microscopy (LEEM) are surface techniques that can be used to image surface structure, electronic states, and surface chemistry. Important applications of the technique in catalysis, energy, nano science, and material sciences have been seen. In this paper, we briefly introduce the principle of PEEM/LEEM and the recent advances of the technique. Then, some applications of PEEM/LEEM in dynamic studies of surface physics and chemistry of two-dimensional (2D) atomic crystals are highlighted, which include the growth of 2D atomic crystals, the formation of 2D heterostructures, the intercalation of the 2D materials, and chemical reactions confined under the 2D materials. Using surface imaging, micro-region low energy electron diffraction (μ-LEED), and the intensity-voltage (I-V) curves, the kinetics of 2D material growth and reactions at the 2D material/solid interfaces can be deeply understood.
-
-
[1]
(1) Tromp, R. M.; Reuter, M. C. Ultramicroscopy 1991, 36 (1–3), 99. doi: 10.1016/0304-3991(91)90141-R
-
[2]
(2) Engel, W.; Kordesch, M. E.; Rotermund, H. H.; Kubala, S.; von Oertzen, A. Ultramicroscopy 1991, 36 (1–3), 148. doi: 10.1016/0304-3991(91)90146-W
-
[3]
(3) Bauer, E. Rep. Prog. Phys. 1994, 57 (9), 895. doi: 0034-4885/94/090895
-
[4]
(4) Tromp, R. M. Ibm. J. Res. Develop. 2000, 44 (4), 503. doi: 10.1147/rd.444.0503
-
[5]
(5) Ertl, G. Angew. Chem. Int. Edit. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480
-
[6]
(6) Imbihl, R. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 347. doi: 10.1016/j.elspec.2012.05.001
-
[7]
(7) Luer Ben, B.; Janek, J.; Gunther, S.; Kiskinova, M.; Imbihl, R. Phys. Chem. Chem. Phys. 2002, 4 (12), 2673. doi: 10.1039/B109893D
-
[8]
(8) Luerβen, B.; Mutoro, E.; Fischer, H.; Günther, S.; Imbihl, R.; Janek, J. Angew. Chem. Int. Edit. 2006, 45 (9), 1473. doi: 10.1002/anie.200503708
-
[9]
(9) Man, K. L.; Altman, M. S. J. Phys.: Condens. Matter 2012, 24 (31), 314209. doi: 10.1088/0953-8984/24/31/314209
-
[10]
(10) Sutter, P.; Sutter, E. Adv. Funct. Mater. 2013, 23 (20), 2617. doi: 10.1002/adfm.201203426
-
[11]
(11) Frazer, B. H.; Girasole, M.; Wiese, L. M.; Franz, T.; Stasio, G. D. Ultramicroscopy 2004, 99 (2–3), 87. doi: 10.1016/j.ultramic.2003.10.001
-
[12]
(12) Fukidome, H.; Kotsugi, M.; Nagashio, K.; Sato, R.; Ohkochi, T.; Itoh, T.; Toriumi, A.; Suemitsu, M.; Kinoshita, T. Sci. Rep. 2014, 4, 3713. doi: 10.1038/srep03713
-
[13]
(13) Xiong, G.; Shao, R.; Peppernick, S. J.; Joly, A. G.; Beck, K. M.; Hess, W. P.; Cai, M.; Duchene, J.; Wang, J. Y.; Wei, W. D. JOM 2010, 62 (12), 90. doi: 10.1007/s11837-010-0189-1
-
[14]
(14) Günther, S.; Kaulich, B.; Gregoratti, L.; Kiskinova, M. Prog. Surf. Sci. 2002, 70 (4–8), 187. doi: 10.1016/S0079-6816(02)00007-2
-
[15]
(15) Choi, J.; Wu, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Owens, T.; Qiu, Z. Q. Phys. Rev. Lett. 2007, 98 (20), 207205. doi: 10.1103/PhysRevLett.98.207205
-
[16]
(16) Chung, W. F.; Altman, M. S. Ultramicroscopy 1998, 74 (4), 237. doi: 10.1016/S0304-3991(98)00043-6
-
[17]
(17) Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New J. Phys. 2009, 11 (6), 063046. doi: 10.1088/1367-2630/11/6/063046
-
[18]
(18) Bauer, E. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 314. doi: 10.1016/j.elspec.2012.08.001
-
[19]
(19) Bauer, E. Ultramicroscopy 2012, 119, 18. doi: 10.1016/ j.ultramic.2011.09.006
-
[20]
(20) Tromp, R. M.; Hannon, J. B.; Ellis, A. W.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2010, 110 (7), 852. doi: 10.1016/j.ultramic.2010.03.005
-
[21]
(21) Tromp, R. M.; Hannon, J. B.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2013, 127, 25. doi: 10.1016/j.ultramic.2012.07.016
-
[22]
(22) Cao, N.; Fu, Q.; Bao, X. H. Bulletin of Chinese Academy of Sciences 2012, 27 (1), 103. [曹凝, 傅强, 包信和. 中国科学院院刊, 2012, 27 (1), 103.]
-
[23]
(23) Meyer zu Heringdorf, F. J.; Reuter, M.; Tromp, R. Nature 2001, 412 (6846), 517. doi: 10.1038/35087532
-
[24]
(24) Schmid, A. K.; Bartelt, N. C.; Hwang, R. Q. Science 2000, 290 (5496). doi: 10.1126/science.290.5496.1561
-
[25]
(25) Santos, B.; Loginova, E.; Mascaraque, A.; Schmid, A. K.; McCarty, K. F.; Figuera, J. D. L. J. Phys.: Condens. Matter 2009, 21 (31), 314011. doi: 10.1088/0953-8984/21/31/314011
-
[26]
(26) Grinter, D. C.; Yim, C. M.; Pang, C. L.; Santos, B.; Menteş, T. O.; Locatelli, A.; Thornton, G. J. Phys. Chem. C 2013, 117 (32), 16509. doi: 10.1021/jp405887h
-
[27]
(27) Qin, H.; Chen, X.; Li, l.; Sutter, P. W.; Zhou, G. Proc. Natl. Acad. Sci. 2015, 112 (2), E103. doi: 10.1073/pnas.1420690112
-
[28]
(28) Wu, Q.; Zdyb, R.; Bauer, E.; Altman, M. S. Phys. Rev. B 2013, 87 (10), 104410. doi: 10.1103/PhysRevB.87.104410
-
[29]
(29) Yang, Y.; Fu, Q.; Li, H.; Wei, M.; Xiao, J.; Wei, W.; Bao, X. ACS Nano 2015, 9 (12), 11589. doi: 10.1021/acsnano.5b05509
-
[30]
(30) Yeh, P. C.; Jin, W.; Zaki, N.; Zhang, D.; Sadowski, J. T.; Al-Mahboob, A.; van der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P.; Sutter, P.; Hone, J.; Osgood, R. M. Phys. Rev. B 2014, 89 (15), 155408. doi: 10.1103/PhysRevB.89.155408
-
[31]
(31) Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Science 2001, 292 (5520), 1357. doi: 10.1126/science.1059478
-
[32]
(32) Cui, Y.; Fu, Q.; Bao, X. Phys. Chem. Chem. Phys. 2010, 12 (19), 5053. doi: 10.1039/C000719F
-
[33]
(33) Yan, K.; Wu, D.; Peng, H.; Jin, L.; Fu, Q.; Bao, X.; Liu, Z. Nat. Commun. 2012, 3, 1280. doi: 10.1038/ncomms2286
-
[34]
(34) Cui, Y.; Fu, Q.; Zhang, H.; Tan, D.; Bao, X. J. Phys. Chem. C 2009, 113 (47), 20365. doi: 10.1021/jp907949a
-
[35]
(35) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702
-
[36]
(36) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343 (6167), 163. doi: 10.1126/science.1246137
-
[37]
(37) Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Phys. Rev. B 2008, 77 (7), 075413. doi: 10.1103/PhysRevB.77.075413
-
[38]
(38) Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80 (24), 245411. doi: 10.1103/PhysRevB.80.245411
-
[39]
(39) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877
-
[40]
(40) Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nat Mater. 2008, 7 (5), 406. doi: 10.1038/nmat2166
-
[41]
(41) Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. J. Phys. Chem. C 2012, 116 (4), 2988. doi: 10.1021/jp210206y
-
[42]
(42) Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Nano Lett. 2012, 12 (9), 4869. doi: 10.1021/nl302398m
-
[43]
(43) Geim, A.; Grigorieva, I. Nature 2013, 499 (7459), 419. doi: 10.1038/nature12385
-
[44]
(44) Jin, L.; Fu, Q.; Dong, A.; Ning, Y.; Wang, Z.; Bluhm, H.; Bao, X. J. Phys. Chem. C 2014, 118 (23), 12391. doi: 10.1021/jp5034855
-
[45]
(45) Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. J. Phys. Chem. C 2013, 117 (12), 6320. doi: 10.1021/jp400838j
-
[46]
(46) Mu, R.; Fu, Q.; Jin, L.; Yu, L.; Fang, G.; Tan, D.; Bao, X. Angew. Chem. Int. Edit. 2012, 51 (20), 4856. doi: 10.1002/anie.201200413
-
[47]
(47) Zhang, Y.; Weng, X.; Li, H.; Li, H.; Wei, M.; Xiao, J.; Liu, Z.; Chen, M.; Fu, Q.; Bao, X. Nano Lett. 2015, 15 (5), 3616. doi: 10.1021/acs.nanolett.5b01205
-
[48]
(48) Zhang, Y.; Wei, M.; Fu, Q.; Bao, X. Sci. Bull. 2015, 60 (18), 1572. doi: 10.1007/s11434-015-0875-z
-
[49]
(49) Du, Z.; Sarofim, A. F.; Longwell, J. P.; Mims, C. A. Energ. Fuel 1991, 5 (1), 214. doi: 10.1021/ef00025a035
-
[50]
(50) Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. J. Phys. Chem. B 1999, 103 (45), 9944. doi: 10.1021/jp9920895
-
[51]
(51) Starodub, E.; Bartelt, N. C.; McCarty, K. F. J. Phys. Chem. C 2010, 114 (11), 5134. doi: 10.1021/jp912139e
-
[52]
(52) Sutter, P.; Sadowski, J. T.; Sutter, E. A. J. Am. Chem. Soc. 2010, 132 (23), 8175. doi: 10.1021/ja102398n
-
[53]
(53) Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (48), 17023. doi: 10.1073/pnas.1416368111
-
[54]
(54) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Laurent, G.; Douillard, L.; Charra, F. Nano Lett. 2011, 11 (2), 402. doi: 10.1021/nl103007m
-
[55]
(55) Douillard, L.; Charra, F. J. Electron. Spectrosc. Relat. Phenom. 2013, 189 (Supplement), 24. doi: 10.1016/j.elspec.2013.03.013
-
[56]
(56) Mutoro, E.; Hellwig, C.; Luerssen, B.; Guenther, S.; Bessler, W. G.; Janek, J. Phys. Chem. Chem. Phys. 2011, 13 (28), 12798.
doi: 10.1039/C1CP20361D
-
[57]
(57) Schmidt, T.; Groh, U.; Fink, R.; Umbach, E.; Schaff, O.; Engel, W.; Richter, B.; Kuhlenbeck, H.; Schlogl, R.; Freund, H. J.; Bradshaw, A. M.; Preikszas, D.; Hartel, P.; Spehr, R.; Rose, H.; Lilienkamp, G.; Bauer, E.; Benner, G. Surf. Rev. Lett. 2002, 9 (1), 223. doi: 10.1142/S0218625X02001811
-
[58]
(58) Guo, F. Z.; Wakita, T.; Shimizu, H.; Matsushita, T.; Yasue, T.; Koshikawa, T.; Bauer, E.; Kobayashi, K. J. Phys.: Condens. Matter 2005, 17 (16), S1363. doi: 10.1088/0953-8984/17/16/007
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[5]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[8]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[11]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[12]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[13]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[14]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[15]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[16]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[17]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[18]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[19]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[20]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(348)
- HTML views(30)