Citation:
NING Yan-Xiao, FU Qiang, BAO Xin-He. Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 171-182.
doi:
10.3866/PKU.WHXB201512152
-
Photoemission electron microscopy (PEEM)/low energy electron microscopy (LEEM) are surface techniques that can be used to image surface structure, electronic states, and surface chemistry. Important applications of the technique in catalysis, energy, nano science, and material sciences have been seen. In this paper, we briefly introduce the principle of PEEM/LEEM and the recent advances of the technique. Then, some applications of PEEM/LEEM in dynamic studies of surface physics and chemistry of two-dimensional (2D) atomic crystals are highlighted, which include the growth of 2D atomic crystals, the formation of 2D heterostructures, the intercalation of the 2D materials, and chemical reactions confined under the 2D materials. Using surface imaging, micro-region low energy electron diffraction (μ-LEED), and the intensity-voltage (I-V) curves, the kinetics of 2D material growth and reactions at the 2D material/solid interfaces can be deeply understood.
-
-
-
[1]
(1) Tromp, R. M.; Reuter, M. C. Ultramicroscopy 1991, 36 (1–3), 99. doi: 10.1016/0304-3991(91)90141-R
-
[2]
(2) Engel, W.; Kordesch, M. E.; Rotermund, H. H.; Kubala, S.; von Oertzen, A. Ultramicroscopy 1991, 36 (1–3), 148. doi: 10.1016/0304-3991(91)90146-W
-
[3]
(3) Bauer, E. Rep. Prog. Phys. 1994, 57 (9), 895. doi: 0034-4885/94/090895
-
[4]
(4) Tromp, R. M. Ibm. J. Res. Develop. 2000, 44 (4), 503. doi: 10.1147/rd.444.0503
-
[5]
(5) Ertl, G. Angew. Chem. Int. Edit. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480
-
[6]
(6) Imbihl, R. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 347. doi: 10.1016/j.elspec.2012.05.001
-
[7]
(7) Luer Ben, B.; Janek, J.; Gunther, S.; Kiskinova, M.; Imbihl, R. Phys. Chem. Chem. Phys. 2002, 4 (12), 2673. doi: 10.1039/B109893D
-
[8]
(8) Luerβen, B.; Mutoro, E.; Fischer, H.; Günther, S.; Imbihl, R.; Janek, J. Angew. Chem. Int. Edit. 2006, 45 (9), 1473. doi: 10.1002/anie.200503708
-
[9]
(9) Man, K. L.; Altman, M. S. J. Phys.: Condens. Matter 2012, 24 (31), 314209. doi: 10.1088/0953-8984/24/31/314209
-
[10]
(10) Sutter, P.; Sutter, E. Adv. Funct. Mater. 2013, 23 (20), 2617. doi: 10.1002/adfm.201203426
-
[11]
(11) Frazer, B. H.; Girasole, M.; Wiese, L. M.; Franz, T.; Stasio, G. D. Ultramicroscopy 2004, 99 (2–3), 87. doi: 10.1016/j.ultramic.2003.10.001
-
[12]
(12) Fukidome, H.; Kotsugi, M.; Nagashio, K.; Sato, R.; Ohkochi, T.; Itoh, T.; Toriumi, A.; Suemitsu, M.; Kinoshita, T. Sci. Rep. 2014, 4, 3713. doi: 10.1038/srep03713
-
[13]
(13) Xiong, G.; Shao, R.; Peppernick, S. J.; Joly, A. G.; Beck, K. M.; Hess, W. P.; Cai, M.; Duchene, J.; Wang, J. Y.; Wei, W. D. JOM 2010, 62 (12), 90. doi: 10.1007/s11837-010-0189-1
-
[14]
(14) Günther, S.; Kaulich, B.; Gregoratti, L.; Kiskinova, M. Prog. Surf. Sci. 2002, 70 (4–8), 187. doi: 10.1016/S0079-6816(02)00007-2
-
[15]
(15) Choi, J.; Wu, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Owens, T.; Qiu, Z. Q. Phys. Rev. Lett. 2007, 98 (20), 207205. doi: 10.1103/PhysRevLett.98.207205
-
[16]
(16) Chung, W. F.; Altman, M. S. Ultramicroscopy 1998, 74 (4), 237. doi: 10.1016/S0304-3991(98)00043-6
-
[17]
(17) Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New J. Phys. 2009, 11 (6), 063046. doi: 10.1088/1367-2630/11/6/063046
-
[18]
(18) Bauer, E. J. Electron. Spectrosc. Relat. Phenom. 2012, 185 (10), 314. doi: 10.1016/j.elspec.2012.08.001
-
[19]
(19) Bauer, E. Ultramicroscopy 2012, 119, 18. doi: 10.1016/ j.ultramic.2011.09.006
-
[20]
(20) Tromp, R. M.; Hannon, J. B.; Ellis, A. W.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2010, 110 (7), 852. doi: 10.1016/j.ultramic.2010.03.005
-
[21]
(21) Tromp, R. M.; Hannon, J. B.; Wan, W.; Berghaus, A.; Schaff, O. Ultramicroscopy 2013, 127, 25. doi: 10.1016/j.ultramic.2012.07.016
-
[22]
(22) Cao, N.; Fu, Q.; Bao, X. H. Bulletin of Chinese Academy of Sciences 2012, 27 (1), 103. [曹凝, 傅强, 包信和. 中国科学院院刊, 2012, 27 (1), 103.]
-
[23]
(23) Meyer zu Heringdorf, F. J.; Reuter, M.; Tromp, R. Nature 2001, 412 (6846), 517. doi: 10.1038/35087532
-
[24]
(24) Schmid, A. K.; Bartelt, N. C.; Hwang, R. Q. Science 2000, 290 (5496). doi: 10.1126/science.290.5496.1561
-
[25]
(25) Santos, B.; Loginova, E.; Mascaraque, A.; Schmid, A. K.; McCarty, K. F.; Figuera, J. D. L. J. Phys.: Condens. Matter 2009, 21 (31), 314011. doi: 10.1088/0953-8984/21/31/314011
-
[26]
(26) Grinter, D. C.; Yim, C. M.; Pang, C. L.; Santos, B.; Menteş, T. O.; Locatelli, A.; Thornton, G. J. Phys. Chem. C 2013, 117 (32), 16509. doi: 10.1021/jp405887h
-
[27]
(27) Qin, H.; Chen, X.; Li, l.; Sutter, P. W.; Zhou, G. Proc. Natl. Acad. Sci. 2015, 112 (2), E103. doi: 10.1073/pnas.1420690112
-
[28]
(28) Wu, Q.; Zdyb, R.; Bauer, E.; Altman, M. S. Phys. Rev. B 2013, 87 (10), 104410. doi: 10.1103/PhysRevB.87.104410
-
[29]
(29) Yang, Y.; Fu, Q.; Li, H.; Wei, M.; Xiao, J.; Wei, W.; Bao, X. ACS Nano 2015, 9 (12), 11589. doi: 10.1021/acsnano.5b05509
-
[30]
(30) Yeh, P. C.; Jin, W.; Zaki, N.; Zhang, D.; Sadowski, J. T.; Al-Mahboob, A.; van der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P.; Sutter, P.; Hone, J.; Osgood, R. M. Phys. Rev. B 2014, 89 (15), 155408. doi: 10.1103/PhysRevB.89.155408
-
[31]
(31) Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Science 2001, 292 (5520), 1357. doi: 10.1126/science.1059478
-
[32]
(32) Cui, Y.; Fu, Q.; Bao, X. Phys. Chem. Chem. Phys. 2010, 12 (19), 5053. doi: 10.1039/C000719F
-
[33]
(33) Yan, K.; Wu, D.; Peng, H.; Jin, L.; Fu, Q.; Bao, X.; Liu, Z. Nat. Commun. 2012, 3, 1280. doi: 10.1038/ncomms2286
-
[34]
(34) Cui, Y.; Fu, Q.; Zhang, H.; Tan, D.; Bao, X. J. Phys. Chem. C 2009, 113 (47), 20365. doi: 10.1021/jp907949a
-
[35]
(35) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702
-
[36]
(36) Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Science 2014, 343 (6167), 163. doi: 10.1126/science.1246137
-
[37]
(37) Hibino, H.; Kageshima, H.; Maeda, F.; Nagase, M.; Kobayashi, Y.; Yamaguchi, H. Phys. Rev. B 2008, 77 (7), 075413. doi: 10.1103/PhysRevB.77.075413
-
[38]
(38) Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80 (24), 245411. doi: 10.1103/PhysRevB.80.245411
-
[39]
(39) Geim, A. K. Science 2009, 324 (5934), 1530. doi: 10.1126/science.1158877
-
[40]
(40) Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nat Mater. 2008, 7 (5), 406. doi: 10.1038/nmat2166
-
[41]
(41) Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. J. Phys. Chem. C 2012, 116 (4), 2988. doi: 10.1021/jp210206y
-
[42]
(42) Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Nano Lett. 2012, 12 (9), 4869. doi: 10.1021/nl302398m
-
[43]
(43) Geim, A.; Grigorieva, I. Nature 2013, 499 (7459), 419. doi: 10.1038/nature12385
-
[44]
(44) Jin, L.; Fu, Q.; Dong, A.; Ning, Y.; Wang, Z.; Bluhm, H.; Bao, X. J. Phys. Chem. C 2014, 118 (23), 12391. doi: 10.1021/jp5034855
-
[45]
(45) Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. J. Phys. Chem. C 2013, 117 (12), 6320. doi: 10.1021/jp400838j
-
[46]
(46) Mu, R.; Fu, Q.; Jin, L.; Yu, L.; Fang, G.; Tan, D.; Bao, X. Angew. Chem. Int. Edit. 2012, 51 (20), 4856. doi: 10.1002/anie.201200413
-
[47]
(47) Zhang, Y.; Weng, X.; Li, H.; Li, H.; Wei, M.; Xiao, J.; Liu, Z.; Chen, M.; Fu, Q.; Bao, X. Nano Lett. 2015, 15 (5), 3616. doi: 10.1021/acs.nanolett.5b01205
-
[48]
(48) Zhang, Y.; Wei, M.; Fu, Q.; Bao, X. Sci. Bull. 2015, 60 (18), 1572. doi: 10.1007/s11434-015-0875-z
-
[49]
(49) Du, Z.; Sarofim, A. F.; Longwell, J. P.; Mims, C. A. Energ. Fuel 1991, 5 (1), 214. doi: 10.1021/ef00025a035
-
[50]
(50) Hahn, J. R.; Kang, H.; Lee, S. M.; Lee, Y. H. J. Phys. Chem. B 1999, 103 (45), 9944. doi: 10.1021/jp9920895
-
[51]
(51) Starodub, E.; Bartelt, N. C.; McCarty, K. F. J. Phys. Chem. C 2010, 114 (11), 5134. doi: 10.1021/jp912139e
-
[52]
(52) Sutter, P.; Sadowski, J. T.; Sutter, E. A. J. Am. Chem. Soc. 2010, 132 (23), 8175. doi: 10.1021/ja102398n
-
[53]
(53) Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (48), 17023. doi: 10.1073/pnas.1416368111
-
[54]
(54) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Laurent, G.; Douillard, L.; Charra, F. Nano Lett. 2011, 11 (2), 402. doi: 10.1021/nl103007m
-
[55]
(55) Douillard, L.; Charra, F. J. Electron. Spectrosc. Relat. Phenom. 2013, 189 (Supplement), 24. doi: 10.1016/j.elspec.2013.03.013
-
[56]
(56) Mutoro, E.; Hellwig, C.; Luerssen, B.; Guenther, S.; Bessler, W. G.; Janek, J. Phys. Chem. Chem. Phys. 2011, 13 (28), 12798.
doi: 10.1039/C1CP20361D
-
[57]
(57) Schmidt, T.; Groh, U.; Fink, R.; Umbach, E.; Schaff, O.; Engel, W.; Richter, B.; Kuhlenbeck, H.; Schlogl, R.; Freund, H. J.; Bradshaw, A. M.; Preikszas, D.; Hartel, P.; Spehr, R.; Rose, H.; Lilienkamp, G.; Bauer, E.; Benner, G. Surf. Rev. Lett. 2002, 9 (1), 223. doi: 10.1142/S0218625X02001811
-
[58]
(58) Guo, F. Z.; Wakita, T.; Shimizu, H.; Matsushita, T.; Yasue, T.; Koshikawa, T.; Bauer, E.; Kobayashi, K. J. Phys.: Condens. Matter 2005, 17 (16), S1363. doi: 10.1088/0953-8984/17/16/007
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[3]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[4]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[7]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[12]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[13]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[14]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[15]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[16]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[17]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[18]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[19]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[20]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(421)
- HTML views(48)