Citation: NING Hong-Bo, LI Ze-Rong, LI Xiang-Yuan. Progress in Combustion Kinetics[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 131-153. doi: 10.3866/PKU.WHXB201512151 shu

Progress in Combustion Kinetics

  • Corresponding author: LI Xiang-Yuan, 
  • Received Date: 16 October 2015
    Available Online: 14 December 2015

    Fund Project: 国家自然科学基金(91441114,91441132)资助项目 (91441114,91441132)

  • Chemical kinetic modeling has become more and more important in the analysis of combustion systems. Considerable progress has been made in the development of combustion models in recent years. This review includes the following contents: electronic structure methods for combustion kinetics, recent developments on the calculation methods of thermodynamic parameters and rate constants in combustion, developments of combustion mechanisms and reduction techniques, molecular simulations with reactive force fields, combustion intermediate measurements, experiments for ignition delay time with shock wave tubes and combustion diagnostics. Due to the extreme complexity of reaction networks, the combustion mechanism is still not clearly understood by researchers. Owing to the strong application background, the combustion kinetics have attracted attention in recent years. The solver for reaction rate of intermediate species during combustion occupies the central point in combustion simulation. The progress in the research on reactionturbulence interactions, and the combination of combustion kinetics with computational fluid dynamics, will facilitate fuel design and combustion simulation. To build a reliable combustion model for achieving a reasonable flow field structure description of engines is another important aspect.
  • 加载中
    1. [1]

      (1) Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.; Kelley, A. P.; Law, C. K. Prog. Energy Combust. Sci. 2012, 38 (4), 468.

    2. [2]

      (2) Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energy Combust. Sci. 2009, 35 (5), 398. doi: 10.1016/j.pecs.2009.05.001

    3. [3]

      (3) Pilling, M. J. Proc. Combust. Inst. 2009, 32 (1), 27. doi: 10.1016/j.proci.2008.08.003

    4. [4]

      (4) Simmie, J. M. Prog. Energy Combust. Sci. 2003, 29 (6), 599. doi: 10.1016/S0360-1285(03)00060-1

    5. [5]

      (5) Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P. A.; Herbinet, O.; Sirjean, B.; Warth, V. Chem. Soc. Rev. 2011, 40 (9), 4762. doi: 10.1039/c0cs00207k

    6. [6]

      (6) Pilling, M. J. Chem. Soc. Rev. 2008, 37 (4), 676. doi: 10.1039/b715767c

    7. [7]

      (7) de Vijver, R. V.; Vandewiele, N. M.; Bhoorasingh, P. L.; Slakman, B. L.; Khanshan, F. S.; Carstensen, H. H.; Reyniers, M. F.; Marin, G. B.; West, R. H.; Van Geem, K. M. Int. J. Chem. Kinet. 2015, 47 (4), 199.

    8. [8]

      (8) Ruscic, B. Active Thermochemical Tables (ATcT), Version 1.112, http://atct.anl.gov/Thermochemical (2014)

    9. [9]

      (9) David, R. L. CRC Handbook of Chemistry and Physics, 89th Ed. (Internet version 2009); CRC Press/Taylor and Francis: Boca Raton, FL.

    10. [10]

      (10) Goldsmith, C. F.; Magoon, G. R.; Green, W. H. J. Phys. Chem. A 2012, 116 (36), 9033. doi: 10.1021/jp303819e

    11. [11]

      (11) Burke, S. M.; Simmie, J. M.; Curran, H. J. J. Phys. Chem. Ref. Data 2015, 44 (1), 013101. doi: 10.1063/1.4902535

    12. [12]

      (12) Goos, E.; Burcat, A.; Ruscic, B. New NASA Thermodynamic Polynomials Database with Active Thermochemical Tables updates, Report ANL 05/20 TAE 960, 2011.

    13. [13]

      (13) Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, 1976.

    14. [14]

      (14) Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99 (39), 14514. doi: 10.1021/j100039a045

    15. [15]

      (15) Ritter, E. R.; Bozzelli, J. W. Int. J. Chem. Kinet. 1991, 23 (9), 767.

    16. [16]

      (16) Muller, C.; Michel, V.; Scacchi, G.; Côme, G. M. J. Chim. Phys. 1995, 92, 1154.

    17. [17]

      (17) Ranzi, E.; Dente, M.; Faravelli, T.; Pennati, G. Combust. Sci. Techol. 1993, 95 (1–6), 1.

    18. [18]

      (18) Jencks, W. P. Chem. Rev. 1985, 85 (6), 511. doi: 10.1021/cr00070a001

    19. [19]

      (19) Sharma, S.; Raman, S.; Green, W. H. J .Phys. Chem. A 2010, 114 (18), 5689. doi: 10.1021/jp9098792

    20. [20]

      (20) Miyoshi, A. J. Phys. Chem. A 2011, 115 (15), 3301. doi: 10.1021/jp112152n

    21. [21]

      (21) Evans, M. G; Polanyi, M. Trans. Faraday Soc. 1938, 34, 11. doi: 10.1039/tf9383400011

    22. [22]

      (22) Dean, A. M.; Bozzelli, J. W. Gas-phase Combustion Chemistry; Gardiner, W. C. Ed.; Springer-Verlag; New York: 2000.

    23. [23]

      (23) Harding, L. B.; Klippenstein, S. J.; Jasper, A. W. Phys. Chem. Chem. Phys. 2007, 9 (31), 4055. doi: 10.1039/b705390h

    24. [24]

      (24) Klippenstein, S. J.; Pande, V. S.; Truhlar, D. G. J. Am. Chem. Soc. 2014, 136 (2), 528. doi: 10.1021/ja408723a

    25. [25]

      (25) Vereecken, L.; Glowacki, D. R.; Pilling, M. J. Chem. Rev. 2015, 115 (10), 4063. doi: 10.1021/cr500488p

    26. [26]

      (26) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87 (10), 5968. doi: 10.1063/1.453520

    27. [27]

      (27) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76 (4), 1910. doi: 10.1063/1.443164

    28. [28]

      (28) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6

    29. [29]

      (29) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90 (10), 5622. doi: 10.1063/1.456415

    30. [30]

      (30) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109 (18), 7764. doi: 10.1063/1.477422

    31. [31]

      (31) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114 (1), 108. doi: 10.1063/1.1321305

    32. [32]

      (32) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126 (8), 084108. doi: 10.1063/1.2436888

    33. [33]

      (33) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89 (4), 2193. doi: 10.1063/1.455064

    34. [34]

      (34) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A. J. Chem. Phys. 1991, 94 (9), 6091. doi: 10.1063/1.460448

    35. [35]

      (35) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101 (7), 5900. doi: 10.1063/1.467306

    36. [36]

      (36) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104 (7), 2598. doi: 10.1063/1.470985

    37. [37]

      (37) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110 (6), 2822. doi: 10.1063/1.477924

    38. [38]

      (38) Martin, J. M. L.; de Oliveira, G. J. Chem. Phys. 1999, 111 (5), 1843. doi: 10.1063/1.479454

    39. [39]

      (39) Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállay, M.; Gauss, J. J. Chem. Phys. 2004, 120 (9), 4129. doi: 10.1063/1.1638736

    40. [40]

      (40) Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B. J. Chem. Phys. 2006, 125 (14), 144108. doi: 10.1063/1.2348881

    41. [41]

      (41) Karton, A.; Martin, J. M. L. J. Chem. Phys. 2012, 136 (12), 124114. doi: 10.1063/1.3697678

    42. [42]

      (42) Tajti, A.; Szalay, P. G.; Csaszár, A. G.; Kállay, M.; Gauss, J.; Valeev, E. F.; Flowers, B. A.; Vazquez, J.; Stanton, J. F. J. Chem. Phys. 2004, 121 (23), 11599. doi: 10.1063/1.1811608

    43. [43]

      (43) Bomble, Y. J.; Vazquez, J.; Kállay, M.; Michauk, C.; Szalay, P. G.; Csaszár, A. G.; Gauss, J.; Stanton, J. F. J. Chem. Phys. 2006, 125 (6), 064108. doi: 10.1063/1.2206789

    44. [44]

      (44) East, A.; Johnson, C.; Allen, W. J. Chem. Phys. 1993, 98 (2), 1299. doi: 10.1063/1.464298

    45. [45]

      (45) Schuurman, M. S.; Muir, S. R.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 2004, 120 (24), 11586. doi: 10.1063/1.1707013

    46. [46]

      (46) Alecu, I. M.; Zheng, J. J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6 (9), 2872. doi: 10.1021/ct100326h

    47. [47]

      (47) Laury, M. L.; Boesch, S. E.; Haken, I.; Sinha, P.; Wheeler, R. A.; Wilson, A. K. J. Comput. Chem. 2011, 32 (11), 2339.

    48. [48]

      (48) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111 (45), 11683. doi: 10.1021/jp073974n

    49. [49]

      (49) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6

    50. [50]

      (50) Simmie, J. M.; Somers, K. P. J. Phys. Chem. A 2015, 119 (28), 7235. doi: 10.1021/jp511403a

    51. [51]

      (51) Somers, K. P.; Simmie, J. M. J. Phys. Chem. A 2015, 119 (33), 8922. doi: 10.1021/acs.jpca.5b05448

    52. [52]

      (52) Ditchfield, R.; Hehre, W. J.; Pople, J. A.; Radom, L. Chem. Phys. Lett. 1970, 5 (1), 13. doi: 10.1016/0009-2614(70)80116-6

    53. [53]

      (53) Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92 (16), 4796. doi: 10.1021/ja00719a006

    54. [54]

      (54) Ramabhadran, R. O.; Raghavachari, K. J. Chem. Theory Comput. 2011, 7 (7), 2094. doi: 10.1021/ct200279q

    55. [55]

      (55) Ramabhadran, R. O.; Raghavachari, K. J. Phys. Chem. A 2012, 116 (28), 7531. doi: 10.1021/jp301421a

    56. [56]

      (56) Melius, C. F.; Binkley, J. S. Symp. (Int.) Combust. 1988, 21 (1), 1953. doi: 10.1016/S0082-0784(88)80432-6

    57. [57]

      (57) Melius, C. F.; Allendorf, M. D. J. Phys. Chem. A 2000, 104 (11), 2168. doi: 10.1021/jp9914370

    58. [58]

      (58) Wilcox, C.; Russo, S. Int. J. Chem. Kinet. 2001, 33 (12), 770.

    59. [59]

      (59) Wu, J. M.; Zhou, Y. W.; Xu, X. Int. J. Quantum Chem. 2015, 115 (16), 1021. doi: 10.1002/qua.24919

    60. [60]

      (60) Liu, C. X.; Wang, H. X.; Li, Z. R.; Rao, H. B.; Zhou, C. W.; Li, X. Y. J. Comput. Chem. 2010, 31 (14), 2585. doi: 10.1002/jcc.v31:14

    61. [61]

      (61) Zádor, J.; Taatjes, C. A.; Fernandes, R. X. Prog. Energy Combust. Sci. 2011, 37 (4), 371. doi: 10.1016/j.pecs.2010.06.006

    62. [62]

      (62) Carr, R. W. Modeling of Chemical Reactions; Green, N. J. B. Ed.; Elsevier B. V.; Amsterdam: 2007.

    63. [63]

      (63) Zhang, S.; Truong, T. N. J. Phys. Chem. A 2003, 107 (8), 1138. doi: 10.1021/jp021265y

    64. [64]

      (64) Bankiewicz, B.; Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2009, 113 (8), 1564. doi: 10.1021/jp808874j

    65. [65]

      (65) Orrego, J. F.; Truong, T. N.; Mondragon, F. J. Phys. Chem. A 2008, 112 (36), 8205. 36 doi: 10.1021/jp805012f

    66. [66]

      (66) Davis, A. C.; Francisco, J. S. J. Phys. Chem. A 2011, 115 (14), 2966. doi: 10.1021/jp110142h

    67. [67]

      (67) Davis, A. C.; Francisco, J. S. J. Phys. Chem. A 2010, 114 (43), 11492. doi: 10.1021/jp1042393

    68. [68]

      (68) Wang, H. X.; Wang, B. Y.; Zhang, J. L.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32 (5), 1123. [王海霞, 汪必耀, 张俊玲, 李泽荣, 李象远. 高等学校化学学报, 2011, 32 (5), 1123.]

    69. [69]

      (69) Wang, B. Y.; Tan, N. X.; Yao, Q.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28 (12), 2824. [汪必耀, 谈宁馨, 姚倩, 李泽荣, 李象远. 物理化学学报, 2012, 28 (12), 2824.] doi: 10.3866/PKU.WHXB201209053

    70. [70]

      (70) Wang, B. Y.; Li, Z. R.; Tan, N. X.; Yao, Q.; Li, X. Y. J. Phys. Chem. A 2013, 117 (16), 3279. doi: 10.1021/jp400924w

    71. [71]

      (71) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: London, 1990.

    72. [72]

      (72) Jasper, A. W.; Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117 (47), 12243. doi: 10.1021/jp409086w

    73. [73]

      (73) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117 (13), 2718. doi: 10.1021/jp312712p

    74. [74]

      (74) Kim, S. K.; Ross, J. J. Chem. Phys. 1967, 46 (2), 818.

    75. [75]

      (75) Troe, J. J. Chem. Phys. 1977, 66 (11), 4758. doi: 10.1063/1.433838

    76. [76]

      (76) Sutton, G. P. History of Liquid Propellant Rocket Engines; American Institute of Aeronautics and Astronautics: Reston, Virginia, 2006.

    77. [77]

      (77) Jasper, A. W.; Miller, J. A. Combust. Flame 2014, 161 (1), 101.

    78. [78]

      (78) Cambi, R.; Cappelletti, D.; Liuti, G.; Pirani, F. J. Chem. Phys. 1991, 95 (3), 1852. doi: 10.1063/1.461035

    79. [79]

      (79) Barker, J. R.; Yoder, L. M.; King, K. D. J. Phys. Chem. A 2001, 105 (5), 796. doi: 10.1021/jp002077f

    80. [80]

      (80) Jasper, A. W.; Pelzer, K. M.; Miller, J. A.; Kamarchik, E.; Harding, L. B.; Klippenstein, S. J. Science 2014, 346 (6214), 1212. doi: 10.1126/science.1260856

    81. [81]

      (81) Allen, J. W.; Goldsmith, C. F.; Green, W. H. Phys. Chem. Chem. Phys. 2012, 14 (3), 1131. doi: 10.1039/C1CP22765C

    82. [82]

      (82) Njegic, B.; Gordon, M. S. J. Chem. Phys. 2008, 129 (16), 164107. doi: 10.1063/1.2987712

    83. [83]

      (83) Johnson, R. D., III; Irikura, K. K.; Kacker, R. N.; Kessel, R. J. Chem. Theory Comput. 2010, 6 (9), 2822. doi: 10.1021/ct100244d

    84. [84]

      (84) Bowan, J. M. J. Chem. Phys. 1978, 68 (2), 608. doi: 10.1063/1.435782

    85. [85]

      (85) Neugebaur, J.; Hess, B. A. J. Chem. Phys. 2003, 118 (16), 7215. doi: 10.1063/1.1561045

    86. [86]

      (86) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10 (7), 428. doi: 10.1063/1.1723744

    87. [87]

      (87) Van Speybroeck, V.; Van Neck, D.; Waroquier, M. J. Phys. Chem. A 2002, 106 (38), 8945. doi: 10.1021/jp025836y

    88. [88]

      (88) Vansteenkiste, P.; Van Speybroeck, V.; Marin, G. B.; Waroquier, M. J. Phys. Chem. A 2003, 107 (17), 3139. doi: 10.1021/jp027132u

    89. [89]

      (89) Klippenstein, S. J. Comprehensive Chemical Kinetics: Unimolecular Kinetics Part 1. The Reaction Step; Green, N. J. B. Ed.; Elsevier; Amsterdam: 2003.

    90. [90]

      (90) Li, Q.; Yao, L.; Shao, Y.; Yang, K. J. Chin. Chem. Soc. 2014, 61 (3), 309. doi: 10.1002/jccs.v61.3

    91. [91]

      (91) Zhang, L. W.; Yao, L.; Lia, Q.; Wang, G. Q.; Lin, S. H. Mol. Phys. 2014, 112 (21), 2853. doi: 10.1080/00268976.2014.915066

    92. [92]

      (92) Li, Q.; Yao, L.; Lin, S. H. Can. J. Chem. 2015, 93 (6), 655. doi: 10.1139/cjc-2015-0005

    93. [93]

      (93) Song, D.; Su, H. M.; Kong, F. A.; Lin, S. H. J. Chem. Phys. 2013, 138 (10), 104301. doi: 10.1063/1.4794152

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    16. [16]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    17. [17]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(1)
  • Abstract views(471)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return