Citation: NING Hong-Bo, LI Ze-Rong, LI Xiang-Yuan. Progress in Combustion Kinetics[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 131-153. doi: 10.3866/PKU.WHXB201512151
-
Chemical kinetic modeling has become more and more important in the analysis of combustion systems. Considerable progress has been made in the development of combustion models in recent years. This review includes the following contents: electronic structure methods for combustion kinetics, recent developments on the calculation methods of thermodynamic parameters and rate constants in combustion, developments of combustion mechanisms and reduction techniques, molecular simulations with reactive force fields, combustion intermediate measurements, experiments for ignition delay time with shock wave tubes and combustion diagnostics. Due to the extreme complexity of reaction networks, the combustion mechanism is still not clearly understood by researchers. Owing to the strong application background, the combustion kinetics have attracted attention in recent years. The solver for reaction rate of intermediate species during combustion occupies the central point in combustion simulation. The progress in the research on reactionturbulence interactions, and the combination of combustion kinetics with computational fluid dynamics, will facilitate fuel design and combustion simulation. To build a reliable combustion model for achieving a reasonable flow field structure description of engines is another important aspect.
-
-
[1]
(1) Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.; Kelley, A. P.; Law, C. K. Prog. Energy Combust. Sci. 2012, 38 (4), 468.
-
[2]
(2) Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energy Combust. Sci. 2009, 35 (5), 398. doi: 10.1016/j.pecs.2009.05.001
-
[3]
(3) Pilling, M. J. Proc. Combust. Inst. 2009, 32 (1), 27. doi: 10.1016/j.proci.2008.08.003
-
[4]
(4) Simmie, J. M. Prog. Energy Combust. Sci. 2003, 29 (6), 599. doi: 10.1016/S0360-1285(03)00060-1
-
[5]
(5) Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P. A.; Herbinet, O.; Sirjean, B.; Warth, V. Chem. Soc. Rev. 2011, 40 (9), 4762. doi: 10.1039/c0cs00207k
-
[6]
(6) Pilling, M. J. Chem. Soc. Rev. 2008, 37 (4), 676. doi: 10.1039/b715767c
-
[7]
(7) de Vijver, R. V.; Vandewiele, N. M.; Bhoorasingh, P. L.; Slakman, B. L.; Khanshan, F. S.; Carstensen, H. H.; Reyniers, M. F.; Marin, G. B.; West, R. H.; Van Geem, K. M. Int. J. Chem. Kinet. 2015, 47 (4), 199.
-
[8]
(8) Ruscic, B. Active Thermochemical Tables (ATcT), Version 1.112, http://atct.anl.gov/Thermochemical (2014)
-
[9]
(9) David, R. L. CRC Handbook of Chemistry and Physics, 89th Ed. (Internet version 2009); CRC Press/Taylor and Francis: Boca Raton, FL.
-
[10]
(10) Goldsmith, C. F.; Magoon, G. R.; Green, W. H. J. Phys. Chem. A 2012, 116 (36), 9033. doi: 10.1021/jp303819e
-
[11]
(11) Burke, S. M.; Simmie, J. M.; Curran, H. J. J. Phys. Chem. Ref. Data 2015, 44 (1), 013101. doi: 10.1063/1.4902535
-
[12]
(12) Goos, E.; Burcat, A.; Ruscic, B. New NASA Thermodynamic Polynomials Database with Active Thermochemical Tables updates, Report ANL 05/20 TAE 960, 2011.
-
[13]
(13) Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, 1976.
-
[14]
(14) Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99 (39), 14514. doi: 10.1021/j100039a045
-
[15]
(15) Ritter, E. R.; Bozzelli, J. W. Int. J. Chem. Kinet. 1991, 23 (9), 767.
-
[16]
(16) Muller, C.; Michel, V.; Scacchi, G.; Côme, G. M. J. Chim. Phys. 1995, 92, 1154.
-
[17]
(17) Ranzi, E.; Dente, M.; Faravelli, T.; Pennati, G. Combust. Sci. Techol. 1993, 95 (1–6), 1.
-
[18]
(18) Jencks, W. P. Chem. Rev. 1985, 85 (6), 511. doi: 10.1021/cr00070a001
-
[19]
(19) Sharma, S.; Raman, S.; Green, W. H. J .Phys. Chem. A 2010, 114 (18), 5689. doi: 10.1021/jp9098792
-
[20]
(20) Miyoshi, A. J. Phys. Chem. A 2011, 115 (15), 3301. doi: 10.1021/jp112152n
-
[21]
(21) Evans, M. G; Polanyi, M. Trans. Faraday Soc. 1938, 34, 11. doi: 10.1039/tf9383400011
-
[22]
(22) Dean, A. M.; Bozzelli, J. W. Gas-phase Combustion Chemistry; Gardiner, W. C. Ed.; Springer-Verlag; New York: 2000.
-
[23]
(23) Harding, L. B.; Klippenstein, S. J.; Jasper, A. W. Phys. Chem. Chem. Phys. 2007, 9 (31), 4055. doi: 10.1039/b705390h
-
[24]
(24) Klippenstein, S. J.; Pande, V. S.; Truhlar, D. G. J. Am. Chem. Soc. 2014, 136 (2), 528. doi: 10.1021/ja408723a
-
[25]
(25) Vereecken, L.; Glowacki, D. R.; Pilling, M. J. Chem. Rev. 2015, 115 (10), 4063. doi: 10.1021/cr500488p
-
[26]
(26) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87 (10), 5968. doi: 10.1063/1.453520
-
[27]
(27) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76 (4), 1910. doi: 10.1063/1.443164
-
[28]
(28) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6
-
[29]
(29) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90 (10), 5622. doi: 10.1063/1.456415
-
[30]
(30) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109 (18), 7764. doi: 10.1063/1.477422
-
[31]
(31) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114 (1), 108. doi: 10.1063/1.1321305
-
[32]
(32) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126 (8), 084108. doi: 10.1063/1.2436888
-
[33]
(33) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89 (4), 2193. doi: 10.1063/1.455064
-
[34]
(34) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A. J. Chem. Phys. 1991, 94 (9), 6091. doi: 10.1063/1.460448
-
[35]
(35) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101 (7), 5900. doi: 10.1063/1.467306
-
[36]
(36) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104 (7), 2598. doi: 10.1063/1.470985
-
[37]
(37) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110 (6), 2822. doi: 10.1063/1.477924
-
[38]
(38) Martin, J. M. L.; de Oliveira, G. J. Chem. Phys. 1999, 111 (5), 1843. doi: 10.1063/1.479454
-
[39]
(39) Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállay, M.; Gauss, J. J. Chem. Phys. 2004, 120 (9), 4129. doi: 10.1063/1.1638736
-
[40]
(40) Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B. J. Chem. Phys. 2006, 125 (14), 144108. doi: 10.1063/1.2348881
-
[41]
(41) Karton, A.; Martin, J. M. L. J. Chem. Phys. 2012, 136 (12), 124114. doi: 10.1063/1.3697678
-
[42]
(42) Tajti, A.; Szalay, P. G.; Csaszár, A. G.; Kállay, M.; Gauss, J.; Valeev, E. F.; Flowers, B. A.; Vazquez, J.; Stanton, J. F. J. Chem. Phys. 2004, 121 (23), 11599. doi: 10.1063/1.1811608
-
[43]
(43) Bomble, Y. J.; Vazquez, J.; Kállay, M.; Michauk, C.; Szalay, P. G.; Csaszár, A. G.; Gauss, J.; Stanton, J. F. J. Chem. Phys. 2006, 125 (6), 064108. doi: 10.1063/1.2206789
-
[44]
(44) East, A.; Johnson, C.; Allen, W. J. Chem. Phys. 1993, 98 (2), 1299. doi: 10.1063/1.464298
-
[45]
(45) Schuurman, M. S.; Muir, S. R.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 2004, 120 (24), 11586. doi: 10.1063/1.1707013
-
[46]
(46) Alecu, I. M.; Zheng, J. J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6 (9), 2872. doi: 10.1021/ct100326h
-
[47]
(47) Laury, M. L.; Boesch, S. E.; Haken, I.; Sinha, P.; Wheeler, R. A.; Wilson, A. K. J. Comput. Chem. 2011, 32 (11), 2339.
-
[48]
(48) Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111 (45), 11683. doi: 10.1021/jp073974n
-
[49]
(49) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6
-
[50]
(50) Simmie, J. M.; Somers, K. P. J. Phys. Chem. A 2015, 119 (28), 7235. doi: 10.1021/jp511403a
-
[51]
(51) Somers, K. P.; Simmie, J. M. J. Phys. Chem. A 2015, 119 (33), 8922. doi: 10.1021/acs.jpca.5b05448
-
[52]
(52) Ditchfield, R.; Hehre, W. J.; Pople, J. A.; Radom, L. Chem. Phys. Lett. 1970, 5 (1), 13. doi: 10.1016/0009-2614(70)80116-6
-
[53]
(53) Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92 (16), 4796. doi: 10.1021/ja00719a006
-
[54]
(54) Ramabhadran, R. O.; Raghavachari, K. J. Chem. Theory Comput. 2011, 7 (7), 2094. doi: 10.1021/ct200279q
-
[55]
(55) Ramabhadran, R. O.; Raghavachari, K. J. Phys. Chem. A 2012, 116 (28), 7531. doi: 10.1021/jp301421a
-
[56]
(56) Melius, C. F.; Binkley, J. S. Symp. (Int.) Combust. 1988, 21 (1), 1953. doi: 10.1016/S0082-0784(88)80432-6
-
[57]
(57) Melius, C. F.; Allendorf, M. D. J. Phys. Chem. A 2000, 104 (11), 2168. doi: 10.1021/jp9914370
-
[58]
(58) Wilcox, C.; Russo, S. Int. J. Chem. Kinet. 2001, 33 (12), 770.
-
[59]
(59) Wu, J. M.; Zhou, Y. W.; Xu, X. Int. J. Quantum Chem. 2015, 115 (16), 1021. doi: 10.1002/qua.24919
-
[60]
(60) Liu, C. X.; Wang, H. X.; Li, Z. R.; Rao, H. B.; Zhou, C. W.; Li, X. Y. J. Comput. Chem. 2010, 31 (14), 2585. doi: 10.1002/jcc.v31:14
-
[61]
(61) Zádor, J.; Taatjes, C. A.; Fernandes, R. X. Prog. Energy Combust. Sci. 2011, 37 (4), 371. doi: 10.1016/j.pecs.2010.06.006
-
[62]
(62) Carr, R. W. Modeling of Chemical Reactions; Green, N. J. B. Ed.; Elsevier B. V.; Amsterdam: 2007.
-
[63]
(63) Zhang, S.; Truong, T. N. J. Phys. Chem. A 2003, 107 (8), 1138. doi: 10.1021/jp021265y
-
[64]
(64) Bankiewicz, B.; Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2009, 113 (8), 1564. doi: 10.1021/jp808874j
-
[65]
(65) Orrego, J. F.; Truong, T. N.; Mondragon, F. J. Phys. Chem. A 2008, 112 (36), 8205. 36 doi: 10.1021/jp805012f
-
[66]
(66) Davis, A. C.; Francisco, J. S. J. Phys. Chem. A 2011, 115 (14), 2966. doi: 10.1021/jp110142h
-
[67]
(67) Davis, A. C.; Francisco, J. S. J. Phys. Chem. A 2010, 114 (43), 11492. doi: 10.1021/jp1042393
-
[68]
(68) Wang, H. X.; Wang, B. Y.; Zhang, J. L.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32 (5), 1123. [王海霞, 汪必耀, 张俊玲, 李泽荣, 李象远. 高等学校化学学报, 2011, 32 (5), 1123.]
-
[69]
(69) Wang, B. Y.; Tan, N. X.; Yao, Q.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28 (12), 2824. [汪必耀, 谈宁馨, 姚倩, 李泽荣, 李象远. 物理化学学报, 2012, 28 (12), 2824.] doi: 10.3866/PKU.WHXB201209053
-
[70]
(70) Wang, B. Y.; Li, Z. R.; Tan, N. X.; Yao, Q.; Li, X. Y. J. Phys. Chem. A 2013, 117 (16), 3279. doi: 10.1021/jp400924w
-
[71]
(71) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: London, 1990.
-
[72]
(72) Jasper, A. W.; Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117 (47), 12243. doi: 10.1021/jp409086w
-
[73]
(73) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117 (13), 2718. doi: 10.1021/jp312712p
-
[74]
(74) Kim, S. K.; Ross, J. J. Chem. Phys. 1967, 46 (2), 818.
-
[75]
(75) Troe, J. J. Chem. Phys. 1977, 66 (11), 4758. doi: 10.1063/1.433838
-
[76]
(76) Sutton, G. P. History of Liquid Propellant Rocket Engines; American Institute of Aeronautics and Astronautics: Reston, Virginia, 2006.
-
[77]
(77) Jasper, A. W.; Miller, J. A. Combust. Flame 2014, 161 (1), 101.
-
[78]
(78) Cambi, R.; Cappelletti, D.; Liuti, G.; Pirani, F. J. Chem. Phys. 1991, 95 (3), 1852. doi: 10.1063/1.461035
-
[79]
(79) Barker, J. R.; Yoder, L. M.; King, K. D. J. Phys. Chem. A 2001, 105 (5), 796. doi: 10.1021/jp002077f
-
[80]
(80) Jasper, A. W.; Pelzer, K. M.; Miller, J. A.; Kamarchik, E.; Harding, L. B.; Klippenstein, S. J. Science 2014, 346 (6214), 1212. doi: 10.1126/science.1260856
-
[81]
(81) Allen, J. W.; Goldsmith, C. F.; Green, W. H. Phys. Chem. Chem. Phys. 2012, 14 (3), 1131. doi: 10.1039/C1CP22765C
-
[82]
(82) Njegic, B.; Gordon, M. S. J. Chem. Phys. 2008, 129 (16), 164107. doi: 10.1063/1.2987712
-
[83]
(83) Johnson, R. D., III; Irikura, K. K.; Kacker, R. N.; Kessel, R. J. Chem. Theory Comput. 2010, 6 (9), 2822. doi: 10.1021/ct100244d
-
[84]
(84) Bowan, J. M. J. Chem. Phys. 1978, 68 (2), 608. doi: 10.1063/1.435782
-
[85]
(85) Neugebaur, J.; Hess, B. A. J. Chem. Phys. 2003, 118 (16), 7215. doi: 10.1063/1.1561045
-
[86]
(86) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10 (7), 428. doi: 10.1063/1.1723744
-
[87]
(87) Van Speybroeck, V.; Van Neck, D.; Waroquier, M. J. Phys. Chem. A 2002, 106 (38), 8945. doi: 10.1021/jp025836y
-
[88]
(88) Vansteenkiste, P.; Van Speybroeck, V.; Marin, G. B.; Waroquier, M. J. Phys. Chem. A 2003, 107 (17), 3139. doi: 10.1021/jp027132u
-
[89]
(89) Klippenstein, S. J. Comprehensive Chemical Kinetics: Unimolecular Kinetics Part 1. The Reaction Step; Green, N. J. B. Ed.; Elsevier; Amsterdam: 2003.
-
[90]
(90) Li, Q.; Yao, L.; Shao, Y.; Yang, K. J. Chin. Chem. Soc. 2014, 61 (3), 309. doi: 10.1002/jccs.v61.3
-
[91]
(91) Zhang, L. W.; Yao, L.; Lia, Q.; Wang, G. Q.; Lin, S. H. Mol. Phys. 2014, 112 (21), 2853. doi: 10.1080/00268976.2014.915066
-
[92]
(92) Li, Q.; Yao, L.; Lin, S. H. Can. J. Chem. 2015, 93 (6), 655. doi: 10.1139/cjc-2015-0005
-
[93]
(93) Song, D.; Su, H. M.; Kong, F. A.; Lin, S. H. J. Chem. Phys. 2013, 138 (10), 104301. doi: 10.1063/1.4794152
-
[1]
-
-
[1]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[2]
Shuyong Zhang , Yaxian Zhu , Wenqing Zhang , Yuzhi Wang , Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026
-
[3]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[4]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[5]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[6]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[7]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[8]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[9]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[10]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[11]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[12]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[13]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[15]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[16]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[17]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[18]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(471)
- HTML views(87)