Citation:
WANG Li, SHI Hong, LIU Hui-Hui, SHAO Xiang, WU Kai. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 183-194.
doi:
10.3866/PKU.WHXB201512113
-
Single crystalline oxide thin film has been delegated as an important approach to studying oxide materials. The related researches are at the frontier of model catalysis. In this review, we try to summarize what has been researched so far around the CaO(001) films, which have been recently developed in Prof. Hajo Freund's group at the Fritz-Haber Institute. The revealed properties of CaO films have displayed the common characteristics of supported ultrathin oxide films, which are sensitively dependent on the interface structures and film thicknesses, but they have also shown new aspects such as the novel tuning effects from self-doping by substrate ions. Low-temperature scanning tunneling microscopy (LT-STM) has been applied through all detailed studies, including the characterizations of atomic structure and electronic properties, recognition of various defects and charge analyses of various surface species. The microscopic information received from delicate STM measurements provides atomic views of the effective factors involved in manipulating the oxide surface properties. With the aid of theoretical calculations, deep insights of the doping mechanism and selection principles of the dopants are achieved, which should largely assist the design of new catalysts.
-
Keywords:
- CaO,
- Thin film,
- Model catalyst,
- STM,
- Surface chemistry
-
-
-
[1]
(1) Pacchioni, G.; Freund, H. J. Chem. Rev. 2013, 113, 4035. doi: 10.1021/cr3002017
-
[2]
(2) Campbell, C. T.; Sauer, J. Chem. Rev. 2013, 113, 3859. doi: 10.1021/cr4002337
-
[3]
(3) Surnev, S.; Fortunelli, A.; Netzer, F. P. Chem. Rev. 2013, 113, 4314. doi: 10.1021/cr300307n
-
[4]
(4) Reddy, E. P.; Smirnoiotis, P. G. J. Phys. Chem. B 2004, 108, 7794. doi: 10.1021/jp031245b
-
[5]
(5) Snis, A.; Panas, I. Surf. Sci. 1998, 412/413, 477.
-
[6]
(6) Livraghi, S.; Paganini, M. C.; Giamello, E. J. Mol. Catal. A: Chem. 2010, 322, 39. doi: 10.1016/j.molcata.2010.02.012
-
[7]
(7) Lee, Y. C.; Montano, P. A. Surf. Sci. 1984, 143, 423. doi: 10.1016/0039-6028(84)90551-X
-
[8]
(8) Kawashima, A.; Matsubara, K.; Honda, K. Bioresource Technol. 2009, 100, 696. doi: 10.1016/j.biortech.2008.06.049
-
[9]
(9) Alonso, D. M.; Mariscal, R.; Granados, M. L.; Maireles-Torres, P. Catal. Today 2009, 143, 167. doi: 10.1016/j.cattod. 2008.09.021
-
[10]
(10) Najafpour, M. M.; Ehrenberg, T.; Wiechen, M.; Kurz, P. Angew. Chem. Int. Edit. 2010, 49, 2233. doi: 10.1002/anie.v49:12
-
[11]
(11) Liu, X. J.; He, H. Y.; Wang, Y. J.; Zhu, S. L.; Piao, X. L. Fuel 2008, 87, 216. doi: 10.1016/j.fuel.2007.04.013
-
[12]
(12) Granados, M. L.; Alonso, D. M.; Alba-Rubio, A. C.; Mariscal, R.; Ojeda, M.; Brettes, P. Energy & Fuels 2009, 23, 2259.
-
[13]
(13) Doytl, C. S.; Kendelewicz, T.; Carrier, X.; Brown, G. E., Jr. Surf. Rev. Lett. 1999, 6, 1247. doi: 10.1142/S0218625X99001402
-
[14]
(14) Liu, P.; Kendelewicz, T.; Brown, G. E., Jr.; Parks, G. A.; Pianettaet, P. Surf. Sci. 1998, 416, 326. doi: 10.1016/S0039-6028(98)00637-2
-
[15]
(15) Kadossov, E. B.; Burghaus, U. J. Phys. Chem. C 2008, 112, 7390. doi: 10.1021/jp800755q
-
[16]
(16) Kadossov, E. B.; Burghaus, U. Chem. Commun. 2008, 4073.
-
[17]
(17) Norenberg, H.; Harding, J. H. Phys. Rev. B 1999, 59, 9842. doi: 10.1103/PhysRevB.59.9842
-
[18]
(18) Ochs, D.; Braun, B.; Maus-Friedrichs, W.; Kempter, V. Surf. Sci. 1998, 417, 406. doi: 10.1016/S0039-6028(98)00721-3
-
[19]
(19) Bebensee, F.; Voigts, F.; Maus-Friedrichs, W. Surf. Sci. 2008, 602, 1622. doi: 10.1016/j.susc.2008.02.011
-
[20]
(20) Losego, M. D.; Mita, S.; Collazo, R.; Sitar, Z.; Maria, J. P. J. Vac. Sci. Technol. B 2007, 25, 1029
-
[21]
(21) Iedema, M. J.; Kizhakvariam, N.; Cowin, J. P. J. Phys. Chem. B 1998, 102, 693. doi: 10.1021/jp973169g
-
[22]
(22) Nilius, N. Surf. Sci. Rep. 2009, 64, 595. doi: 10.1016/j.surfrep. 2009.07.004
-
[23]
(23) Shao, X.; Myrach, P.; Nilius, N.; Freund, H. J.; Martinez, U.; Prada, S.; Giordano, L.; Pacchioni, G. Phys. Rev. B 2011, 83, 245407. doi: 10.1103/PhysRevB.83.245407
-
[24]
(24) Shao, X.; Myrach, P.; Nilius, N.; Freund, H. J. J. Phys. Chem. C 2011, 115, 8784. doi: 10.1021/jp201852x
-
[25]
(25) Gonchara, A.; Rissea, T. Molecular Phys. 2013, 111, 2708.
-
[26]
(26) Benia, H. M.; Myrach, P.; Nilius, N.; Freund, H. J. Surf. Sci. 2010, 604, 435. doi: 10.1016/j.susc.2009.12.011
-
[27]
(27) Cui, Y.; Pan, Y.; Pascua, L.; Qiu, H. S.; Stiehler, C.; Kuhlenbeck, H.; Nilius, N.; Freund, H. J. Phys. Rev. B 2015, 91, 035418.
-
[28]
(28) Pal, J.; Smerieri1, M.; Celasco, E.; Savio1, L.; Vattuone, L.; Roccaet, M. Phys. Rev. Lett. 2014, 112, 126102. doi: 10.1103/PhysRevLett.112.126102
-
[29]
(29) Shao, X.; Nilius, N.; Freund, H. J. Phys. Rev. B 2012, 85, 115444. doi: 10.1103/PhysRevB.85.115444
-
[30]
(30) McFarland, E. W.; Metiu, H. Chem. Rev. 2013, 113, 4391. doi: 10.1021/cr300418s
-
[31]
(31) Cui, Y.; Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Freund, H. J.; Nilius, N. Phys. Chem. Chem. Phys. 2014, 16, 12764.
-
[32]
(32) Zheng, H.; Kroger, J.; Berndt, R. Phys. Rev. Lett. 2012, 108, 076801. doi: 10.1103/PhysRevLett.108.076801
-
[33]
(33) Zheng, H.; Weismann, A.; Berndt, R. Phys. Rev. Lett. 2013, 110, 226101. doi: 10.1103/PhysRevLett.110.226101
-
[34]
(34) Cui, Y.; Nilius, N.; Freund, H. J.; Prada, S.; Giordano, L.; Pacchioni, G. Phys. Rev. B 2013, 88, 205421. doi: 10.1103/PhysRevB.88.205421
-
[35]
(35) Shao, X.; Nilius, N.; Freund, H. J. J. Am. Chem. Soc. 2012, 134, 2532. doi: 10.1021/ja211396t
-
[36]
(36) Stavale, F.; Shao, X.; Nilius, N.; Freund, H. J.; Prada, S.; Giordano, L.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 11380. doi: 10.1021/ja304497n
-
[37]
(37) Widmann, D.; Behm, R. J. Accounts Chem. Res. 2014, 47, 740. doi: 10.1021/ar400203e
-
[38]
(38) Sterrer, M.; Risse, T.; Heyde, M.; Rust, H. P.; Freund, H. J. Phys. Rev. Lett. 2007, 98, 206103. doi: 10.1103/PhysRevLett. 98.206103
-
[39]
(39) Sterrer, M.; Risse, T.; Martinez, U.; Giordano, L.; Heyde, M.; Rust, H. P.; Pacchioni, G.; Freund, H. J. Phys. Rev. Lett. 2007, 98, 096107. doi: 10.1103/PhysRevLett.98.096107
-
[40]
(40) Lin, X.; Yang, B.; Benia, H. M.; Myrach, P.; Yulikov, M.; Aumer, A.; Brown, M. A.; Sterrer, M.; Bondarchuk, O.; Kieseritzky, E.; Rocker, J.; Risse, T.; Gao, H. J.; Nilius, N.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 7745. doi: 10.1021/ja101188x
-
[41]
(41) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48
-
[42]
(42) Cui, Y.; Stiehler, C.; Nilius, N.; Freund, H. J. Phys. Rev. B 2015, 92, 075444. doi: 10.1103/PhysRevB.92.075444
-
[43]
(43) Frondelius, P.; Häkkinen, H.; Honkala, K. Angew. Chem. Int. Edit. 2010, 49, 7913. doi: 10.1002/anie.v49:43
-
[44]
(44) Calaza, F.; Stiehler, C.; Fujimori, Y.; Sterrer, M.; Beeg, S.; Ruiz-Oses, M.; Nilius, N.; Heyde, M.; Parviainen, T.; Honkala, K.; Häkkinen, H.; Freund, H. J. Angew. Chem. Int. Edit. 2015, 54, 12484. doi: 10.1002/anie.201501420
-
[45]
(45) Cui, Y.; Huang, K.; Nilius, N.; Freund, H. J. Faraday Discuss. 2013, 162, 153. doi: 10.1039/c3fd20130a
-
[46]
(46) Shao, X.; Cui, Y.; Schneider, W. D.; Nilius, N.; Freund, H. J. J. Phys. Chem. C 2012, 116, 17980. doi: 10.1021/jp306328c
-
[47]
(47) Cui, Y.; Shao, X.; Baldofski, M.; Sauer, J.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2013, 52, 11385. doi: 10.1002/anie. v52.43
-
[48]
(48) Schwach, P.; Willinger, M. G.; Trunschke, A.; Schlögl, R. Angew. Chem. Int. Edit. 2013, 52, 11381. doi: 10.1002/anie. v52.43
-
[49]
(49) Shin, H. J.; Jung, J.; Motobayashi, K.; Yanagisawa, S.; Morikawa, Y.; Kim, Y.; Kawai, M. Nat. Mater. 2010, 9, 442. doi: 10.1038/nmat2740
-
[50]
(50) Dulub, O.; Meyer, B.; Diebold, U. Phys. Rev. Lett. 2005, 95, 136101. doi: 10.1103/PhysRevLett.95.136101
-
[51]
(51) Odelius, M. Phys. Rev. Lett. 1999, 82, 3919. doi: 10.1103/PhysRevLett.82.3919
-
[52]
(52) Brown, M.; Fujimori, Y.; Ringleb, F.; Shao, X.; Stavale, F.; Nilius, N.; Sterrer, M.; Freund, H. J. J. Am. Chem. Soc. 2011, 133, 11668.
-
[53]
(53) Zhao, X. H.; Shao, X.; Fujimori, Y.; Bhattacharya, S.; Ghiringhelli, L. M.; Freund, H. J.; Sterrer, M.; Nilius, N.; Levchenko, S. V. J. Phys. Chem. Lett. 2015, 6, 1204. doi: 10.1021/acs.jpclett.5b00223
-
[54]
(54) Yamada, T.; Tamamori, S.; Okuyama, H.; Aruga, T. Phys. Rev. Lett. 2006, 96, 036105. doi: 10.1103/PhysRevLett.96.036105
-
[55]
(55) He, Y. B.; Li, W. K.; Gong, X. Q.; Dulub, O.; Selloni, A.; Diebold, U. J. Phys. Chem. C 2009, 113, 10329. doi: 10.1021/jp903017x
-
[56]
(56) Chen, J.; Guo, J.; Meng, X. Z.; Peng, J. B.; Sheng, J. M.; Xu, L. M.; Jiang, Y.; Li, X. Z.; Wang, E. G. Nat. Commun. 2014, 5, 4056.
-
[1]
-
-
-
[1]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[2]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[3]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[4]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[5]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[6]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[7]
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
-
[8]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[9]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[10]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[11]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[12]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[13]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[14]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[15]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[16]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[17]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[18]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(460)
- HTML views(58)