Citation: YE Chuan-Xiang, MA Hui-Li, LIANG Wan-Zhen. Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 301-312. doi: 10.3866/PKU.WHXB201512112 shu

Two-Photon Absorption Properties of Chromophores of a Few Fluorescent Proteins: a Theoretical Investigation

  • Corresponding author: LIANG Wan-Zhen, 
  • Received Date: 15 October 2015
    Available Online: 10 December 2015

    Fund Project: 国家自然科学基金(21373163,21290193,21573177)资助项目 (21373163,21290193,21573177)

  • The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins (FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reveal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure-property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and TagRFP. Both the pure electronic and vibrationally-resolved TPA spectra have been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of vibronic spectra can be well produced when the Franck- Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0 to S1 for two anionic chromophores, leading to a blue-shift of the TPA maximum relative to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfer character of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.
  • 加载中
    1. [1]

      (1) Zimmer, M. Chem. Rev. 2002, 102, 759. doi: 10.1021/cr010142r

    2. [2]

      (2) Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Nat. Methods 2011, 8, 393. doi: 10.1038/nmeth.1596

    3. [3]

      (3) Drobizhev, M.; Tillo, S.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2009, 113, 855. doi: 10.1021/jp8087379

    4. [4]

      (4) Spiess, E.; Bestvater, F.; Heckel-pompey, A.; Toth, K.; Hacker, M.; Stobrawa, G.; Feurer, T.; Wotzlaw, C.; Berchner-Pfannschmidt, U.; Porwol, T.; Acker, H. J. Microsc. 2005, 217, 200. doi: 10.1111/jmi.2005.217.issue-3

    5. [5]

      (5) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H.; Porres, L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109, 3024. doi: 10.1021/jp044193e

    6. [6]

      (6) Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10763. doi: 10.1073/pnas.93.20.10763

    7. [7]

      (7) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509

    8. [8]

      (8) Hunter, S.; Kiamilev, F.; Esener, S.; Parthenopoulos, D. A.; Rentzepis, P. M. Appl. Optics 1990, 29, 2058. doi: 10.1364/AO.29.002058

    9. [9]

      (9) Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Physiol. Rev. 2010, 90, 1103. doi: 10.1152/physrev.00038.2009

    10. [10]

      (10) Oulianov, D.; Tomov, I.; Dvornikov, A.; Rentzepis, P. Opt. Commun. 2001, 191, 235. doi: 10.1016/S0030-401801121-X

    11. [11]

      (11) Nanda, K. D.; Krylov, A. I. J. Chem. Phys. 2015, 142, 064118. doi: 10.1063/1.4907715

    12. [12]

      (12) Yuan, L.; Lin, W. Y.; Chen, H.; Zhu, S.; He, L. W. Angew. Chem. Int. Edit. 2013, 52, 10018. doi: 10.1002/anie.201303179

    13. [13]

      (13) Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641. doi: 10.1002/adma.v20:24

    14. [14]

      (14) Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958. doi: 10.1039/c3cp55205e

    15. [15]

      (15) Nifosí, R.; Luo, Y. J. Phys. Chem. B 2007, 111, 14043. doi: 10.1021/jp075545v

    16. [16]

      (16) Vivas, M.; Silva, D.; Misoguti, L.; Zalesny, R.; Bartkowiak, W.; Mendonca, C. R. J. Phys. Chem. A 2010, 114, 3466. doi: 10.1021/jp910010g

    17. [17]

      (17) Tretiak, S.; Chernyak, V. J. Chem. Phys. 2003, 119, 8809. doi: 10.1063/1.1614240

    18. [18]

      (18) Kamarchik, E.; Krylov, A. I. J. Chem. Phys. Lett. 2011, 2, 488. doi: 10.1021/jz101616g

    19. [19]

      (19) Steindal, A. H.; Olsen, J. M. H.; Ruud, K.; Frediani, L.; Kongsted, J. Phys. Chem. Chem. Phys. 2012, 14, 5440. doi: 10.1039/c2cp23537d

    20. [20]

      (20) Nayyar, I. H.; Masunov, A. E.; Tretiak, S. J. Phys. Chem. C 2013, 117, 18170. doi: 10.1021/jp403981d

    21. [21]

      (21) Christiansen, O.; Koch, H.; Jørgensen, P. Chem. Phys. Lett. 1995, 243, 409. doi: 10.1016/0009-261400841-Q

    22. [22]

      (22) Drobizhev, M.; Makarov, N.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2007, 111, 14051. doi: 10.1021/jp075879k

    23. [23]

      (23) Ma, H. L.; Zhao, Y.; Liang, W. Z. J. Chem. Phys. 2014, 140, 094107. doi: 10.1063/1.4867273

    24. [24]

      (24) Liang, W. Z.; Ma, H. L.; Zang, H.; Ye, C. X. Int. J. Quantum Chem. 2015, 115, 550. doi: 10.1002/qua.24824

    25. [25]

      (25) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 184111. doi: 10.1063/1.3659312

    26. [26]

      (26) Liu, J.; Liang, W. Z. J. Chem. Phys. 2011, 135, 014113. doi: 10.1063/1.3605504

    27. [27]

      (27) Liu, J.; Liang, W. Z. J. Chem. Phys. 2013, 138, 024101. doi: 10.1063/1.4773397

    28. [28]

      (28) Zeng, Q.; Liu, J.; Liang, W. Z. J. Chem. Phys. 2014, 140, 18A506. doi: 10.1063/1.4863563

    29. [29]

      (29) Zeng, Q.; Liang, W. Z. J. Chem. Phys. 2015, 143, 134104. doi: 10.1063/1.4931734

    30. [30]

      (30) Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant, A. Biochemistry 2009, 48, 10038. doi: 10.1021/bi901093w

    31. [31]

      (31) Pletnev, S.; Subach, F. V.; Dauter, Z.; Wlodawer, A.; Verkhusha, V. V. J. Mol. Biol. 2012, 417, 144. doi: 10.1016/j.jmb.2012.01.044

    32. [32]

      (32) Hales, J. M.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K.; Morales, A.; Belfield, K. D.; Pacher, P.; Kwon, O.; Zojer, E.;
      Brédas, J. L. J. Chem. Phys. 2004, 121, 3152. doi: 10.1063/1.1770726

    33. [33]

      (33) Drobizhev, M.; Karotki, A.; Kruk, M.; Rebane, A. Chem. Phys. Lett. 2002, 355, 175. doi: 10.1016/S0009-261400206-3

    34. [34]

      (34) Wanko, M.; García-Risueño, P.; Rubio, A. Phys. Status Solidi-b 2012, 249, 392. doi: 10.1002/pssb.201100536

    35. [35]

      (35) McClain, W. J. Chem. Phys. 1971, 55, 2789. doi: 10.1063/1.1676494

    36. [36]

      (36) Dick, B.; Hochstrasser, R.; Trommsdorff, H. Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J. Eds; Academic Press: Orlando, 1987; pp 159–212.

    37. [37]

      (37) Shen, Y. R. The Principles of Nonlinear Optics, 1st ed.; Wiley-Interscience: New York, 1984; pp 216–795.

    38. [38]

      (38) Bishop, D. M.; Luis, J. M.; Kirtman, B. J. Chem. Phys. 2002, 116, 9729.

    39. [39]

      (39) Silverstein, D. W.; Jensen, L. J. Chem. Phys. 2012, 136, 064111. doi: 10.1063/1.3684236

    40. [40]

      (40) Ma, H. L.Theoretical Study on the Optical Properties of Molecules and Noble Metal Nanoparticles. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014. [马会利. 分子与惰性金属纳米粒子光学性质的理论研究[D]. 合肥: 中国科学技术大学, 2014.]

    41. [41]

      (41) Santoro, F.; Cappelli, C.; Barone, V. J. Chem. Theory Comput. 2011, 7, 1824. doi: 10.1021/ct200054w

    42. [42]

      (42) Ferrer, F. A.; Barone, V.; Cappelli, C.; Santoro, F. J. Chem. Theory Comput. 2013, 9, 3597. doi: 10.1021/ct400197y

    43. [43]

      (43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2009.

    44. [44]

      (44) Dalton, a Molecular Electronic Structure Program; Release Dalton 2011, 2011. see http://daltonprogram.org.

    45. [45]

      (45) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009

    46. [46]

      (46) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110. doi: 10.1063/1.3359469

    47. [47]

      (47) Luzanov, A.; Sukhorukov, A.; Umanskii, V. Theor. Exp. Chem. 1976, 10, 354. doi: 10.1007/BF00526670

    48. [48]

      (48) Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U.; Tomita, S.; Andersen, L. Phys. Rev. Lett. 2001, 87, 228102. doi: 10.1103/PhysRevLett.87.228102

    49. [49]

      (49) Sun, C.; Liu, J.; Liang, W. Z.; Zhao, Y. Chin. J. Chem. Phys. 2013, 26, 617. doi: 10.1063/1674-0068/26/06/617-626

    50. [50]

      (50) Marques, M. A.; López, X.; Varsano, D.; Castro, A.; Rubio, A. Phys. Rev. Lett. 2003, 90, 258101. doi: 10.1103/PhysRevLett.90.258101

    51. [51]

      (51) Nienhaus, K.; Nar, H.; Heilker, R.; Wiedenmann, J.; Nienhaus, G. U. J. Am. Chem. Soc. 2008, 130, 12578. doi: 10.1021/ja8046443

    52. [52]

      (52) Stavrov, S. S.; Solntsev, K. M.; Tolbert, L. M.; Huppert, D. J. Am. Chem. Soc. 2006, 128, 1540. doi: 10.1021/ja0555421

    53. [53]

      (53) Subach, F. V.; Verkhusha, V. V. Chem. Rev. 2012, 112, 4308. doi: 10.1021/cr2001965

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return