Citation: ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 261-266. doi: 10.3866/PKU.WHXB201512101
-
The electrocatalytic reduction of CO2 to HCOOH is an interesting topic and the efficiency usually depends strongly on the materials of the electrodes. Herein, nanostructured Cu2S on Cu-foam was prepared by electro-deposition method and characterized by means of scanning electron microscope (SEM) and X-ray diffraction (XRD). The Cu2S/Cu-foam electrode was used for the first time in the electrocatalytic reduction of CO2 to HCOOH, and acetonitrile (MeCN) with 0.5 mol·L-1 1-butyl-3- methylimidazolium tetrafluoroborate (BmimBF4) was used as the electrolyte. It was demonstrated that the electrolysis system was very efficient for the electrochemical reaction, and faradaic efficiency of HCOOH (FEHCOOH) and reduction current density could reach 85% and 5.3 mA·cm-2, respectively.
-
Keywords:
- Copper(I) sulfide,
- Copper foam,
- Formic acid,
- Electrochemistry,
- CO2 reduction
-
-
[1]
(1) He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384
-
[2]
(2) Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A
-
[3]
(3) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E
-
[4]
(4) Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627
-
[5]
(5) Zhao, C. C.; He, X. M.; Wang, L.; Guo, J. W. Chem. Ind. En. Pro. (China) 2013, 32, 373. [赵晨辰, 何向明, 王莉, 郭建伟. 化工进展, 2013, 32, 373.]
-
[6]
(6) Zhou, F.; Liu, S. M.; Alshammari, A. S.; Deng, Y. Q. Chin. Sci. Bull. 2015, 60, 2466. [周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466.] doi: 10.1360/N972015-00339
-
[7]
(7) Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G
-
[8]
(8) Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786
-
[9]
(9) Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220
-
[10]
(10) Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799
-
[11]
(11) Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885
-
[12]
(12) Kang, P.; Zhang, S.; Meer, T. J.; Brookhart, M. Angew. Chem. Int. Edit. 2014, 53, 8709. doi: 10.1002/anie.201310722
-
[13]
(13) Watkins, J. D.; Bocarsly, A. B. ChemSusChem 2014, 7, 284. doi: 10.1002/cssc.201300659
-
[14]
(14) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 34, 7231. doi: 10.1021/ja3010978
-
[15]
(15) Kortlever, R.; Peter, I.; Koper, S.; Koper, M. T. M. ACS Catal. 2015, 5, 3916. doi: 10.1021/acscatal.5b00602
-
[16]
(16) Lu, X.; Leung, D. Y. C.; Wang, H. Z.; Leung, M. K. H.; Xuan, J. ChemElectroChem 2014, 1, 836. doi: 10.1002/celc.201300206
-
[17]
(17) Huan, T. N.; Andreiadis, E.; Heidkamp, J.; Simon, P.; Derat, E.; Cobo, S.; Royal, G.; Berqmann, A.; Strasser, P.; Dau, H.; Artero, V.; Fontecave, M. J. Mater. Chem. A 2015, 3, 3901. doi: 10.1039/C4TA07022D
-
[18]
(18) Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W. W.; Hu, H. L.; Fang, X. D.; Dai, S. Y. Acta. Phys. -Chim. Sin. 2013, 29, 533. [朱俊, 余学超, 王时茂, 董伟伟, 胡华林, 方晓东, 戴松元. 物理化学学报, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124
-
[19]
(19) Chung, J. S.; Sohn, H. J. J. Power Sources 2002, 108, 226. doi: 10.1016/S0378-7753(02)00024-1
-
[20]
(20) Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J. J. Mater. Chem. 2010, 20, 6638. doi: 10.1039/C0JM00434K
-
[21]
(21) Yu, X. C.; Zhu, J.; Liu, F.; Wei, J. F.; Hu, L. H.; Dai, S. Y. Sci. China Chem. 2013, 56, 977. doi: 10.1007/s11426-012-4810-8
-
[22]
(22) Ni, S. B.; Li, T. L.; Yang, X. L. Thin Solid Films 2012, 520, 6705. doi: 10.1016/j.tsf.2012.06.074
-
[23]
(23) Ni, S. B.; Lv, X. H.; Li, T.; Yang, X. L. Mater. Chem. Phys. 2013, 143, 349. doi: 10.1016/j.matchemphys.2013.09.008
-
[24]
(24) Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. Nanoscale 2014, 6, 14305. doi: 10.1039/C4NR05371K
-
[25]
(25) Sun, X. F.; Tian, Q. Q.; Xue, Z. M.; Zhang, Y. W.; Mu, T. C. RSC Adv. 2014, 4, 30282. doi: 10.1039/C4RA02594F
-
[26]
(26) Anuar, K.; Zainal, Z., Hussein, M. Z.; Saravanan, N.; Haslina, I. Sol. Energy Mater. Sol. Cells 2002, 73, 351. doi: 10.1016/S0927-0248(01)00219-7
-
[27]
(27) Ghahremaninezhad, A.; Asselin, E.; Dixon, D. G. J. Phys. Chem. C 2011, 115, 9320. doi: 10.1021/jp108283z
-
[28]
(28) Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, doi: 10. 1039/c5sc03291a
-
[29]
(29) Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
-
[30]
(30) Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194. doi: 10.1039/C4CP01520G
-
[31]
(31) Chen, Y.; Davoisne, C.; Tarascon, J. M.; Guéry, C. J. Mater. Chem. 2012, 22, 5295. doi: 10.1039/C2JM16692E
-
[32]
(32) DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 8789. doi: 10.1021/ja4033549
-
[33]
(33) Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2014, 136, 8361. doi: 10.1021/ja501923g
-
[34]
(34) Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Edit. 2015, 127, 14914. doi: 10.1002/ange.201505730
-
[35]
(35) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.10.1021/ja309317u
-
[1]
-
-
[1]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[2]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[3]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[4]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[7]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[8]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[11]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[12]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[13]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[14]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[17]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[20]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(403)
- HTML views(27)