Citation: WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 321-328. doi: 10.3866/PKU.WHXB201512091
-
N-doped graphene has aroused much interest owing to its high activity and stability in oxygen reduction reaction (ORR) catalysis. However, the contribution of different types of N-doped graphene to ORR activity remains in dispute. Based on this issue, this paper conducts a comparative study of the ORR on graphitic N-doped graphene (GNG) and pyridinic N-doped grapheme (PNG). Band structure calculations show that the conductivity of GNG decreases as the nitrogen content increases; while that of PNG first increases to the highest at nitrogen content of 4.2% (atomic fraction), and then decreases. The conductivity of PNG is always higher than GNG when the doped nitrogen content is greater than 1.4%. Additionally, the free energy diagram of ORR shows that protonation of O2 is the potential-determining step among the whole ORR process, and the free energy change of this step on GNG is lower than on PNG, suggesting that GNG has higher ORR activity than PNG if their electron transport ability are the same. When the N content is lower than 2.8%, the conductivity difference between GNG and PNG is almost negligible, thus GNG with a higher capacity of O2 protonation exhibits better ORR activity than PNG. When the N content is greater than 2.8%, in this case, conductivity rather than free energy change will dominate, therefore the ORR on PNG will occur faster than on GNG because of its higher conductivity.
-
-
[1]
(1) Wu, G.; Zelenay, P. Accounts Chem. Res. 2013, 46, 1878. doi: 10.1021/ar400011z
-
[2]
(2) Zhang Z. H.; Liu, J.; Gu, J. J.; Su, L.; Cheng, L. F. Energy Environ. Sci. 2014, 7, 2535. doi: 10.1039/c3ee43886d
-
[3]
(3) Shao, Y. Y.; Sui J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B-Environ. 2008, 79, 89. doi:10.1016/j.apcatb.2007.09.047
-
[4]
(4) Huo, R. J.; Jiang, W. J.; Xu, S. L.; Zhang, F. Z.; Hu, J. S. Nanoscale 2014, 6, 203. doi: 10.1039/c3nr05352k
-
[5]
(5) Ferreira, P. J.; la O′, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256. doi: 10.1149/1.2050347
-
[6]
(6) Li, L.; Wang, H. X.; Xu, B. Q.; Li, J. L.; Xing, W.; Mao, Z. Q. Acta Phys. -Chim. Sin. 2003, 19, 342. [李莉, 王恒秀, 徐伯庆, 李晋鲁, 邢魏, 毛宗强. 物理化学学报, 2003, 19, 342.] doi: 10.3866/PKU.WHXB20030413
-
[7]
(7) Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j
-
[8]
(8) Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi: 10.1002/adma.201301870
-
[9]
(9) Zhang, L. P.; Niu, J. B.; Li, M. T.; Xia, Z. H. J. Phys. Chem. C 2014, 118, 3545. doi: 10.1021/jp410501u
-
[10]
(10) Zhu, C. Z.; Dong, S. J. Nanoscale 2013, 5, 1753. doi: 10.1039/c2nr33839d
-
[11]
(11) Liu, Q.; Zhang, H. Y.; Zhong, H. W.; Zhang, S. M.; Chen, S. L. Electrochim. Acta 2012, 81, 313. doi: 10.1016/j.electacta.2012.07.022
-
[12]
(12) Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. 2013, 125, 1. doi: 10.1002/ange.201303924
-
[13]
(13) Soin, N.; Roy, S. S.; Roy, S.; Hazra, K. S.; Misra, D. S.; Lim, T. H.; Hetherington, C. J.; McLaughlin, J. A. J. Phys. Chem. C 2011, 115, 5366. doi:10.1021/jp110476m
-
[14]
(14) Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11, 5401. doi: 10.1021/nl2031037
-
[15]
(15) Lin, Z. Y.; Song, M. K.; Ding, Y.; Liu, Y.; Liu, M. L.; Wong, C. P. Phys. Chem. Chem. Phys. 2012, 14, 3381. doi: 10.1039/C2CP00032F
-
[16]
(16) Ikeda, T.; Boero, M.; Huang, S. F.; Terakura, K.; Oshima, M.; Ozaki, J. I. J. Phys. Chem. C 2008, 112, 14706. doi: 10.1021/jp806084d
-
[17]
(17) Boukhvalov, D. W.; Son, Y. W. Nanoscale 2012, 4, 417. doi: 10.1039/c1nr11307k
-
[18]
(18) Matter, P. H.; Zhang, L.; Ozkan, U. S. J. Catal. 2006, 238, 83. doi: 10.1016/j.jcat.2006.01.022
-
[19]
(19) Zhang, L.; Niu, J.; Dai, L.; Xia, Z. Langmuir 2012, 28, 7542. doi: 10.1021/la2043262
-
[20]
(20) Kresse, G. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[21]
(21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.78.1396
-
[22]
(22) Yu, L.; Pan, X. L.; Cao, P.; Bao, X. H. J. Catal. 2011, 282, 183. doi: 10.1016/j.jcat.2011.06.015
-
[23]
(23) Saidi, W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d
-
[24]
(24) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
-
[25]
(25) Wang, Y.; Cheng, H. P. J. Phys. Chem. C 2013, 117, 2106. doi:10.1021/jp309203k
-
[26]
(26) Liang, W.; Chen, J. X.; Liu, Y. W.; Chen, S. L. ACS Catal. 2014, 4, 4170. doi: 10.1021/cs501170a
-
[27]
(27) Sha, Y.; Yu, T. H.; Liu, Y.; Merinov, B. V.; Goddard, W. A. J. Phys. Chem. Lett. 2010, 1, 856. doi: 10.1021/jz9003153
-
[28]
(28) Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L. Y.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; Fischer, D.; Ogasawara, H.; Pettersson, L. G. M.; Reichman, D. R.; Kim, P.; Hybertsen, M. S.; Pasupathy, A. N. Nano Lett. 2012, 12, 4025. doi: 10.1021/nl301409h
-
[29]
(29) Jafri, S. H. M.; Carva, K.; Widenkvist, E.; Blom, T.; Sanyal, B.; Fransson, J.; Eriksson, O.; Jansson, U.; Grennberg, H.; Karis, O.; Quinlan, R. A. J. Phys. D: Appl. Phys. 2010, 43, 1. doi:10.1088/0022-3727/43/4/045404
-
[30]
(30) Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Edit. 2012, 51, 11496. doi: 10.1002/anie.201206720
-
[31]
(31) Sun, J.; Fang, Y. H.; Liu, Z. P. Phys. Chem. Chem. Phys. 2014, 27, 13733. doi: 10.1039/c4cp00037d
-
[32]
(32) Koper, M. T. M. J. Solid State Electrochem. 2012, 17, 339. doi: 10.1007/s10008-012-1918-x
-
[33]
(33) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc . 2014, 136, 4394. doi: org/10.1021/ja500432h
-
[34]
(34) Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; Ozaki, J. I.; Miyata, S. J. Power Sources 2009, 187, 93. doi: 10.1016/j.jpowsour.2008.10.064
-
[35]
(35) Geng, D. S.; Chen, Y.; Chen, Y. G.; Li, Y. L.; Li, R. Y.; Sun, X. L.; Ye, S. Y.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c
-
[36]
(36) Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622. doi: 10.1021/jz100971v
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[11]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[12]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[13]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[14]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[15]
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
-
[16]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[17]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[18]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[19]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[20]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(630)
- HTML views(64)