Citation: ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 422-428. doi: 10.3866/PKU.WHXB201512082 shu

Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives

  • Corresponding author: ZHANG Pei-Zhi,  WU Jun, 
  • Received Date: 24 August 2015
    Available Online: 7 December 2015

    Fund Project: 国家自然科学基金(31471807) (31471807)公益性行业(农业)科研专项(201403030)资助 (农业)科研专项(201403030)

  • The kinetics of the acid-catalyzed Smiles rearrangement reactions of 2,6-dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine derivatives was investigated. The effects of initial concentrations of hydrochloric acid, solvent, temperature, and substituent on reaction rates were examined. The results show that the rates increase with an increase in the initial concentration of hydrochloric acid. The reactivity order is CH3OH > C2H5OH > CH3SOCH3 > CH3CN in a single solvent, but rates markedly increase in mixed CH3OH/H2O (1:1, V/V) and the apparent reaction rate constant (kobs) is 5.27 times that of methanol. The rates for the derivatives are found to increase with an increase in temperature at 25-45 ℃, and no significant differences in activation energy (73.99-76.92 kJ·mol-1), activation enthalpy (71.57-74.38 kJ·mol-1), and Gibbs free energy (81.51-85.77 kJ·mol-1) are observed between them, except that there is difference in activation entropy (-24.38 --47.11 J·K-1·mol-1). There is a good linear relationship between substituents and the apparent reaction rate constants, and it is speculated that electron-withdrawing groups in the benzene ring will increase the reaction rates. A relevant reaction mechanism is suggested.
  • 加载中
    1. [1]

      (1) Liu, S. H.; Hu, Y.; Qian, P. F.; Hu, Y.W.; Ao, G. Z.; Chen, S.H.; Zhang, S. L.; Zhang, Y. N. Tetrahedron Lett. 2015, 56 (17), 2211. doi: 10.1016/j.tetlet.2015.03.062

    2. [2]

      (2) Nechepurenko, I. V.; Komarova, N. I.; Shernyukov, A. V.; Vasiliev, V. G.; Salakhutdinov, N. F. Tetrahedron Lett. 2014, 55(44), 6125. doi: 10.1016/j.tetlet.2014.09.059

    3. [3]

      (3) Xiao, Y. X.; Zhang, Z. C.; Chen, Y. B.; Shao, X. S.; Li, Z.; Xu, X. Y. Tetrahedron 2015, 71 (12), 1863. doi: 10.1016/j.tet.2015.01.059

    4. [4]

      (4) Kitching, M. O.; Hurst, T. E.; Snieckus, V. Angew. Chem. Int.Edit. 2012, 51 (12), 2925. doi: 10.1002/anie.201106786

    5. [5]

      (5) Yu, J. Z.; Wang, Y. T.; Zhang, P. Z.; Wu, J. Synlett 2013, 24(11), 1448. doi: 10.1055/s-00000083

    6. [6]

      (6) Yu, J. Z.; Zhang, P. Z.; Wu, J.; Shang, Z. C. Tetrahedron Lett.2013, 54 (24), 3167. doi: 10.1016/j.tetlet.2013.04.028

    7. [7]

      (7) Takahashi, T.; Maki, Y. Chem. Pharm. Bull. 1958, 6 (4), 369.

    8. [8]

      (8) Rodig, O. R.; Collier, R. E.; Schlatzer, R. K. J. Org. Chem.1964, 29 (9), 2652.

    9. [9]

      (9) Sunamoto, J.; Kondo, H.; Yanase, F.; Okamoto, H. B. Chem.Soc. Jpn. 1980, 53 (5), 1361.

    10. [10]

      (10) Lindberg, P.; Nordberg, P.; Alminger, T.; Brandstrom, A.; Wallmark, B. J. Med. Chem. 1986, 29 (8), 1327.

    11. [11]

      (11) Terauchi, H.; Tanitame, A.; Tada, K.; Nakamura, K.; Seto, Y.; Nishikawa, Y. J. Med. Chem. 1997, 40 (3), 313.

    12. [12]

      (12) Kuhler, T. C.; Swanson, M.; Christenson, B.; Klintenberg, A.C.; Lamm, B.; Fagerhag, J.; Gatti, R.; Olwegard-Halvarsson, M.; Shcherbuchin, V.; Elebring, T. J. Med. Chem. 2002, 45(19), 4282.

    13. [13]

      (13) Potashman, M. H.; Duggan, M. E. J. Med. Chem. 2009, 52 (5), 1231.

    14. [14]

      (14) Shin, J. M.; Cho, Y. M.; Sachs, G. J. Am. Chem. Soc. 2004, 126(25), 7800.

    15. [15]

      (15) Wu, J.; Cheng, J.; Lu, L. J. Arg. Food Chem. 2006, 54 (16), 5954. doi: 10.1021/jf061063p

    16. [16]

      (16) Wu, J.; Zhang, P. Z.; Lü , L.; Yu, Q. S.; Hu, X. R.; Gu, J. M.Chin. J. Struct. Chem. 2003, 22 (5), 613. [吴军, 张培志, 吕龙, 俞庆森, 胡秀荣, 顾建明. 结构化学, 2003, 22 (5), 613.]

    17. [17]

      (17) Wang, H. Y.; Zhang, X.; Guo, Y. L.; Tang, Q. H.; Lu, L. J. Am.Soc. Mass Spectrom. 2006, 17 (2), 253.

    18. [18]

      (18) Wang, H. Y.; Liao, Y. X.; Guo, Y. L.; Tang, Q. H.; Lu, L.Synlett 2005, 8, 1239.

    19. [19]

      (19) Wu, H. F.; Zhang, P. Z.; Wu, J. J. Zhejiang Univ. -Sci. B 2010, 11 (2), 94.

    20. [20]

      (20) Wei, Y. Y.; Li, J. Z. An Introduction to Chemical Reaction Mechanism; Science Press: Beijing, 2003; pp 37-77. [魏运洋, 李建著. 化学反应机理导论. 北京: 科学出版社, 2003: 37-77.]

    21. [21]

      (21) Richardson, D. E.; Yao, H. R.; Frank, K. M. Bennett, D. A.J. Am. Chem. Soc. 2000, 122 (8), 1729.

    22. [22]

      (22) Zou, J.W.; Shang, Z. C.; Yi, P. G.; Yu, Q. S.; Lin, R. S. Chin.J. Org. Chem. 2000, 20 (4), 537. [邹建卫, 商志才, 易平贵, 俞庆森, 林瑞森. 有机化学, 2000, 20 (4), 537.]

    23. [23]

      (23) Peng, M. J.; Lu, G. B.; Chen, W. H.; Chen, L. P.; Lü , J. Y. Acta Phys. -Chim. Sin. 2013, 29, 2095. [彭敏君, 路贵斌, 陈网桦, 陈利平, 吕家育. 物理化学学报, 2013, 29, 2095.] doi: 10.3866/PKU.WHXB201307122

    24. [24]

      (24) Casey, C. P.; Singer, S.W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123 (6), 1090.

    25. [25]

      (25) Zhu, X. Q.; Cao, L.; Liu, Y.; Yang, Y.; Lu, J. Y.; Wang, J. S.; Cheng, J. P. Chem. -Eur. J. 2003, 9 (16), 3937.

    26. [26]

      (26) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91 (2), 165.

    27. [27]

      (27) Cao, C. T.; Wei, B. Y.; Cao, C. Z. Acta Phys. -Chim. Sin. 2015, 31, 204. [曹朝暾, 魏佰影, 曹晨忠. 物理化学学报, 2015, 31, 204.] doi: 10.3866/PKU.WHXB201412191

    28. [28]

      (28) Hassan, R. M.; Alaraifi, A.; Fawzy, A.; Zaafarany, I. A.; Khairou, K. S.; Ikeda, Y.; Takagi, H. D. J. Mol. Catal. AChem.2010, 332, 138.

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return