Citation:
ZHENG Dong, YUAN Xiang-Ai, MA Jing. Rationalization of pH-Dependent Absorption Spectrum of o-Methyl Red in Aqueous Solutions: TD-DFT Calculation and Experiment Study[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 290-300.
doi:
10.3866/PKU.WHXB201512072
-
The understanding of factors that affect the optical properties of azo dyes sheds insight to the design of novel optoelectronic devices. The effect of the acidity or alkalinity and the solvent on the absorption spectra of ortho-methyl red (o-MR) aqueous solutions was investigated using UV/Vis experiments and density functional theory (DFT) calculations. The spectra of o-MR aqueous solutions showed a red shift of the maximum absorption peak from 430 nm to 520 nm when the pH of the solution was decreased from 13.1 to 0.5. In various acidity or alkalinity conditions, three main forms of o-MR coexisted in the aqueous solutions, i.e., diprotic o-H2MR+ (strong acid condition), nonionic o-HMR (weak acid condition), and o-MR- (basic condition), whose electronic structures were studied by DFT. The lowest dipole-allowed excitation energies of o-MR in aqueous solutions have been estimated by performing timedependent density functional theory (TD-DFT) calculations. Both polarized continuum model (PCM) and explicit water cluster model were applied to study the solvent effects on the electronic structures and calculated spectra. The intramolecular hydrogen bond increases the planarity of o-H2MR+ and o-HMR, leading to the enhancement of π-conjugation and, hence, a red shift in the spectra. Significant solvent effects on the calculated UV/Vis spectra of o-MR- (under basic condition) were revealed. Strong dipole–dipole interactions between the polar o-MR– and solvent water molecules may contribute to the red shift in the spectra.
-
Keywords:
- o-Methyl red,
- UV/Vis spectrum,
- pH,
- Hydrogen bond,
- Solvent effect,
- DFT,
- TD-DFT
-
-
-
[1]
(1) Merino, E.; Ribagorda, M. Beilstein J. Org. Chem. 2012, 8, 1071. doi: 10.3762/bjoc.8.119
-
[2]
(2) Sahoo, C.; Gupta, A. K.; Pal, A. Desalination 2005, 181, 91. doi: 10.1016/j.desal.2005.02.014
-
[3]
(3) Tobey, S. W. J. Chem. Educ. 1958, 35, 514. doi: 10.1021/ed035p514
-
[4]
(4) Drummond, C. J.; Grieser, F.; Healy, T. W. J. Chem. Soc., Faraday Trans. 1989, 85, 561. doi: 10.1039/f19898500561
-
[5]
(5) Zhang, L.; Cole, J. M.; Waddell, P. G; Low, K. S.; Liu, X. G. ACS Sustain. Chem. Eng. 2013, 1, 1440. doi: 10.1021/sc400183t
-
[6]
(6) Wong, J. H.; Lee, S. Physica B 2012, 407, 232. doi: 10.1016/j.physb.2011.10.036
-
[7]
(7) Costa, S. C. S.; Gester, R. M.; Guimarães, J. R.; Amazonas, J. G.; Nero, J. D.; Silva, S. B. C.; Galembeck, A. Opt Mater. 2008, 30 , 1432. doi: 10.1016/j.optmat.2007.08.008
-
[8]
(8) Meng, S. C.; Ma, J. J. Phys. Chem. B 2008, 112, 4313. doi: 10.1021/jp710456p
-
[9]
(9) Zhang, L.; Cole, J. M. Appl. Mater. Interface 2014, 6, 3742. doi: 10.1021/am500308d
-
[10]
(10) Khouri, S. I. J.; Abdel-Rahim, I. A.; Alshamaileh, E. M.; Altwaiq, A. M. J. Solution Chem. 2013, 42, 1844. doi: 10.1007/s10953-013-0068-9
-
[11]
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, 2010
-
[12]
(12) Park, H. S.; Oh, K. S.; Kim, K. S.; Chang, T. J. Phys. Chem. B 1999, 103, 2355. doi: 10.1021/jp9838442
-
[13]
(13) Laurent, A. D.; Jacquemin, D. Int. J. Quantum Chem. 2013, 113, 2019. doi: 10.1002/qua.24438
-
[14]
(14) Giustetto, R.; Seenivasan, K.; Pellerej, D.; Ricchiardi, G.; Bordiga, S. Microporous and Mesoporous Materials 2012, 15, 167. doi: 10.1016/j.micromeso.2012.01.024
-
[15]
(15) Benedict, J. B.; Cohen, D. E.; Lovell, S.; Rohl, A. L.; Kahr, B. J. Am. Chem. Soc. 2006, 128, 5548. doi: 10.1021/ja0601181
-
[16]
(16) Allen, F. H.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Typical Interatomic Distances: Organic Compounds. In International Tables for Crystallography; International Union of Crystallography: Chester, England, 2006; Vol. A, pp 790–811.
-
[17]
(17) Yuan, X. A.; Zhang, W. W.; Xie, L. H.; Ma, J.; Huang, W.; Liu, W. J. J. Phys. Chem. B 2015, 119, 10316.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[6]
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[10]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[11]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[12]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[13]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[14]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[15]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[16]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[17]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[18]
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
-
[19]
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
-
[20]
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(377)
- HTML views(49)