Citation: DU Niao-Feng, NING Hong-Bo, LI Ze-Rong, ZHANG Qi-Yi, LI Xiang-Yuan. Kinetic Calculation and Modeling Study of 1,3-Butadiene Pyrolysis[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 453-464. doi: 10.3866/PKU.WHXB201512071
-
1,3-Butadiene is an important product in combustion and pyrolysis of hydrocarbon fuels and it is also an important precursor to formpolycyclic aromatic hydrocarbons (PAHs). Currently, a variety of experimental and mechanism studies have been performed on 1,3-butadiene oxidation. However, few studies about pyrolysis mechanism of 1,3-butadiene have been done. In this work, the optimization of the geometries and the vibrational frequencies for the reactants, products, and transition states of the relevant reactions in 1,3-butadiene pyrolysis have been performed at the B3LYP/CBSB7 level. Their single point energies and the thermodynamic parameters are also calculated by using the composite CBS-QB3 method. The high-pressure limit rate constants for tight transition state reactions and barrierless reactions are obtained by transition state theory and variable reaction coordinate transition state theory, respectively. The calculated rate constants in this work are in good agreement with those available from literature. Furthermore, the mechanism of Hidaka et al. is updated with replacing the calculated rate constants of reactions in this work to simulate the shock tube experiment results of 1,3-butadiene pyrolysisand the updated mechanism consists of 45 species and 224 reactions. It can be seen that the updated mechanism can improve the concentration profiles of the main products, ethylene, 1-butylene-3-acetylene, and benzene in 1,3-butadiene pyrolysis. It can also provide reliable kinetic and thermodynamic parameters to further improve the core mechanism of C0-C4 species.
-
Keywords:
- 1,3-Butadiene,
- Pyrolysis mechanism,
- Rate constant,
- Kinetic simulation
-
-
[1]
(1) Yao, T.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (7), 1385. [姚通, 钟北京. 物理化学学报, 2013, 29 (7), 1385.] doi: 10.3866/PKU.WHXB201304123
-
[2]
(2) Zeng, M. R.; Yuan, W. H.; Wang, Y. Z.; Zhou, W. X.; Zhang, L.D.; Qi, F.; Li, Y. Y. Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002
-
[3]
(3) Hughes, K.; Meek, M. E.; Walker, M.; Beauchamp, R. 1, 3-Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland, 2001; pp 1-73.
-
[4]
(4) Vaughan, W. E. J. Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ja01349a008
-
[5]
(5) Kistiakovsky, G. B.; Ransom, W.W. J. Chem. Phys. 1939, 7, 725. doi: 10.1063/1.1750519
-
[6]
(6) Harkness, J. B.; Kistiakowski, G. B.; Mears, W. H. J. Chem. Phys. 1937, 5, 682. doi: 10.1063/1.1750100
-
[7]
(7) Granata, S.; Faravelli, T.; Ranzi, E.; Olten, N.; Senkan, S.Combust. Flame 2002, 131, 273. doi: 10.1016/S0010-2180(02)00407-8
-
[8]
(8) Dagaut, P.; Cathonnet, M. Combust. Sci. Technol. 1998, 140, 225. doi: 10.1080/00102209808915773
-
[9]
(9) Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.
-
[10]
(10) Tsang, W. Chemical Activation Reactions in the HeptaneCombustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute ofAeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.
-
[11]
(11) Laskin, A.; Wang, H.; Law, C. K. Int. J. Chem. Kinet. 2000, 32, 589.
-
[12]
(12) Peukert, S.; Braun-Unkhoff, M.; Naumann, C. HighTemperature Kinetics of the Pyrolysis of 1, 3-Butadiene and 2-Butyne. In Fundamental Physical and Chemical Kinetics, Proceedings of the European Combustion Meeting, Vienna, Austria, April 14-17, 2009.
-
[13]
(13) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J.W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. doi: 10.1063/1.477924
-
[14]
(14) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117, 2718. doi: 10.1021/jp312712p
-
[15]
(15) Xu, C.; Shoaibi, A. S. A.; Wang, C. G.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2011, 115, 10470.
-
[16]
(16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[17]
(17) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304
-
[18]
(18) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[19]
(19) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.456010
-
[20]
(20) Sirjean, B.; Fournet, R. J. Phys. Chem. A 2012, 116, 6675. doi: 10.1021/jp303680h
-
[21]
(21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182
-
[22]
(22) Gaithersburg, M. D. NIST Computational ChemistryComparison and Benchmark Database; National Institute ofStandards and Technology. http://webbook.nist.gov/chemistry(2003).
-
[23]
(23) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F. N.; Law, C. K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed2007).
-
[24]
(24) Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D.M.; Robertson, S. H. VariFlex, Version 1.0; Argonne NationalLaboratory: Argonne, IL, 1999.
-
[25]
(25) Beyer, T.; Swinehart, D. F. Comm. Assoc. Comput. Mach.1973, 16, 379.
-
[26]
(26) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H., Unimolecular Reactions, 2nd ed.; JohnWiley & Sons:Chichester, UK, 1996.
-
[27]
(27) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2003, 107, 2680. doi: 10.1021/jp0221082
-
[28]
(28) Saito, K.; Kakumoto, T.; Murakami, I. J. Phys. Chem. 1984, 88, 1182. doi: 10.1021/j150650a033
-
[29]
(29) Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Fundamentals of Momentum, Heat and Mass Transfer, 4th ed.; JohnWiley & Sons Ltd.: New York, 2001.
-
[30]
(30) Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.2013.45.issue-10
-
[31]
(31) UCSD, The San Diego Mechanism, Version 20141004, 2014.http://maeweb.ucsd.edu/combustion/.
-
[32]
(32) Robinson, J. C.; Harris, S. A.; Sun, W.; Sveum, N. E.; Neumark, D. M. J. Am. Chem. Soc. 2002, 124, 10211. doi: 10.1021/ja0127281
-
[33]
(33) Dean, A. M. J. Phys. Chem. 1985, 89, 4600. doi: 10.1021/j100267a038
-
[34]
(34) Kossiakoff, A.; Rice, F. O. J. Am. Chem. Soc. 1943, 65, 590. doi: 10.1021/ja01244a028
-
[35]
(35) Fabuss, B. M.; Borsanyi, A. S.; Satterfield, C. N.; Lait, R. I.; Smith, J. O. Ind. Eng. Chem. Process Des. Dev. 1962, 1, 293. doi: 10.1021/i260004a011
-
[36]
(36) Wu, C. H.; Kern, R. D. J. Phys. Chem. 1987, 91, 6291. doi: 10.1021/j100308a042
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[6]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[12]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[13]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[17]
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
-
[18]
Ze-Yuan Ma , Mei Xiao , Cheng-Kun Li , Adedamola Shoberu , Jian-Ping Zou . S-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076
-
[19]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[20]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(381)
- HTML views(41)