Citation: WANG Hong, ZHANG Hai-Ming, CHI Li-Feng. Surface Assisted Reaction under Ultra High Vacuum Conditions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 154-170. doi: 10.3866/PKU.WHXB201512041 shu

Surface Assisted Reaction under Ultra High Vacuum Conditions

  • Corresponding author: CHI Li-Feng, 
  • Received Date: 4 November 2015
    Available Online: 4 December 2015

    Fund Project: 国家自然科学基金(91227201)资助项目 (91227201)

  • The construction of covalently bonded molecular structures on single crystal metal surfaces has attracted increasing attention because of the synthetic strategies used and their potential application to molecular electronics and optoelectronics. Unlike traditional organic synthesis, surface-assisted reactions have advantages for structural control of the produced polymers, providing detailed understanding of reaction processes, and, most importantly, they produce new materials that cannot be synthesized by traditional means. The types of reactant, the choice of metal surface, and the initial conditions are critical controlling parameters in surface-assisted reactions. Covalent bonds formed in the reaction ensure that the produced structures have higher mechanical and thermodynamic stability compared with self-assembled monolayers (SAMs). Meanwhile, some conjugated polymers are ideal candidates for semiconductors in next-generation carbon-based electronics. In this review, we summarize the surface assisted reactions reported in recent years and analyze the mechanisms involved, comparing them with the corresponding reactions that occur in solution. Finally, we discuss the important role of substrate surface played in the reaction process.
  • 加载中
    1. [1]

      (1) Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671. doi: 10.1038/nature04166

    2. [2]

      (2) Ciesielski, A.; Palma, C. A.; Bonini, M.; Samorì, P. Adv. Mater. 2010, 22, 3506. doi: 10.1002/adma.201001582

    3. [3]

      (3) Xie, Z. X.; Huang, Z. F.; Xu, X. Phys. Chem. Chem. Phys. 2002, 4, 1486. doi: 10.1039/b109159j

    4. [4]

      (4) Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mamdouh, W.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613. doi: 10.1021/ja0655441

    5. [5]

      (5) Griessl, S. J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M. Langmuir 2004, 20, 9403. doi: 10.1021/la049441c

    6. [6]

      (6) Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618. doi: 10.1038/nature07096

    7. [7]

      (7) Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Nature 2014, 507, 86. doi: 10.1038/nature12993

    8. [8]

      (8) Silly, F. J. Phys. Chem. C 2013, 117, 20244. doi: 10.1021/jp4057626

    9. [9]

      (9) Gutzler, R.; Ivasenko, O.; Fu, C.; Brusso, J. L.; Rosei, F.; Perepichka, D. F. Chem. Commun. 2011, 47, 9453.

    10. [10]

      (10) Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Nano Lett. 2007, 7, 3813. doi: 10.1021/nl072466m

    11. [11]

      (11) Shi, Z.; Lin, N. J. Am. Chem. Soc. 2009, 131, 5376. doi: 10.1021/ja900499b

    12. [12]

      (12) Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Chemistry -A European Journal 2009, 15, 7004. doi: 10.1002/chem. 200900900

    13. [13]

      (13) El Garah, M.; MacLeod, J. M.; Rosei, F. Surf. Sci. 2013, 613, 6. doi: 10.1016/j.susc.2013.03.015

    14. [14]

      (14) Franc, G.; Gourdon, A. Phys. Chem. Chem. Phys. 2011, 13, 14283. doi: 10.1039/c1cp20700h

    15. [15]

      (15) Lackinger, M.; Heckl, W. M. Journal of Physics D: Applied Physics 2011, 44, 464011. doi: 10.1088/0022-3727/44/46/464011

    16. [16]

      (16) Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Nat. Chem. 2012, 4, 215.

    17. [17]

      (17) Bieri, M.; Blankenburg, S.; Kivala, M.; Pignedoli, C. A.; Ruffieux, P.; Mullen, K.; Fasel, R. Chem. Commun. 2011, 47, 10239. doi: 10.1039/c1cc12490k

    18. [18]

      (18) Hla, S. W.; Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 2000, 85, 2777. doi: 10.1103/PhysRevLett.85.2777

    19. [19]

      (19) Dinca, L. E.; MacLeod, J. M.; Lipton-Duffin, J.; Fu, C.; Ma, D.; Perepichka, D. F.; Rosei, F. Chem. Commun. 2014, 50, 8791. doi: 10.1039/C4CC03719G

    20. [20]

      (20) Jiang, Y.; Huan, Q.; Fabris, L.; Bazan, G. C.; Ho, W. Nat. Chem. 2013, 5, 36.

    21. [21]

      (21) Basagni, A.; Colazzo, L.; Sedona, F.; DiMarino, M.; Carofiglio, T.; Lubian, E.; Forrer, D.; Vittadini, A.; Casarin, M.; Verdini, A.; Cossaro, A.; Floreano, L.; Sambi, M. Chemistry-A European Journal 2014, 20, 14296.

    22. [22]

      (22) Basagni, A.; Ferrighi, L.; Cattelan, M.; Nicolas, L.; Handrup, K.; Vaghi, L.; Papagni, A.; Sedona, F.; Valentin, C. D.; Agnoli, S.; Sambi, M. Chem. Commun. 2015, 51, 12593. doi: 10.1039/C5CC04317D

    23. [23]

      (23) Gao, H. Y.; Franke, J. H.; Wagner, H.; Zhong, D.; Held, P. A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2013, 117, 18595.

    24. [24]

      (24) Dong, L.; Liu, P. N.; Lin, N. Accounts Chem. Res. 2015, 48, 2765.

    25. [25]

      (25) Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nano 2007, 2, 687. doi: 10.1038/nnano.2007.346

    26. [26]

      (26) Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Nat. Commun. 2012, 3, 1286. doi: 10.1038/ncomms2291

    27. [27]

      (27) Zwaneveld, N. A. A.; Pawlak, R. M.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. J. Am. Chem. Soc. 2008, 130, 6678. doi: 10.1021/ja800906f

    28. [28]

      (28) Zhong, D.; Franke, J. H.; Podiyanachari, S. K.; Blömker, T.; Zhang, H.; Kehr, G.; Erker, G.; Fuchs, H.; Chi, L. Science 2011, 334, 213. doi: 10.1126/science.1211836

    29. [29]

      (29) Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. J. Am. Chem. Soc. 2013, 135, 2136. doi: 10.1021/ja312303a

    30. [30]

      (30) Otero, G.; Biddau, G.; Sanchez-Sanchez, C.; Caillard, R.; Lopez, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Mendez, J.; Echavarren, A. M.; Perez, R.; Gomez-Lor, B.; Martin-Gago, J. A. Nature 2008, 454, 865. doi: 10.1038/nature07193

    31. [31]

      (31) Kanuru, V. K.; Kyriakou, G.; Beaumont, S. K.; Papageorgiou, A. C.; Watson, D. J.; Lambert, R. M. J. Am. Chem. Soc. 2010, 132, 8081. doi: 10.1021/ja1011542

    32. [32]

      (32) Guan, C. Z.; Wang, D.; Wan, L. J. Chem. Commun. 2012, 48, 2943. doi: 10.1039/c2cc16892h

    33. [33]

      (33) Liu, X. H.; Guan, C. Z.; Ding, S.Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470. doi: 10.1021/ja403464h

    34. [34]

      (34) Liu, X. H.; Guan, C. Z.; Zheng, Q. N.; Wang, D.; Wan, L. J. J. Chem. Phys. 2015, 142, 101905. doi: 10.1063/1.4906271

    35. [35]

      (35) Xie, R.; Song, Y.; Wan, L.; Yuan, H.; Li, P.; Xiao, X.; Liu, L.; Ye, S.; Lei, S.; Wang, L. Anal. Sci. 2011, 27, 129. doi: 10.2116/analsci.27.129

    36. [36]

      (36) Gourdon, A. Angew. Chem. Int. Edit. 2008, 47, 6950. doi: 10.1002/anie.v47:37

    37. [37]

      (37) Ullmann, F.; Bielecki, J. Berichte der Deutschen Chemischen Gesellschaft 1901, 34, 2174.

    38. [38]

      (38) Xi, M.; Bent, B. E. Surf. Sci. 1992, 278, 19. doi: 10.1016/0039-6028(92)90580-Y

    39. [39]

      (39) Xi, M.; Bent, B. E. J. Am. Chem. Soc. 1993, 115, 7426. doi: 10.1021/ja00069a048

    40. [40]

      (40) Blake, M. M.; Nanayakkara, S. U.; Claridge, S. A.; Fernández-Torres, L. C.; Sykes, E. C. H.; Weiss, P. S. J. Phys. Chem. A 2009, 113, 13167. doi: 10.1021/jp903590c

    41. [41]

      (41) Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Small 2009, 5, 592. doi: 10.1002/smll.v5:5

    42. [42]

      (42) Wang, W.; Shi, X.; Wang, S.; Van Hove, M. A.; Lin, N. J. Am. Chem. Soc. 2011, 133, 13264. doi: 10.1021/ja204956b

    43. [43]

      (43) Koch, M.; Gille, M.; Viertel, A.; Hecht, S.; Grill, L. Surf. Sci. 2014, 627, 70. doi: 10.1016/j.susc.2014.04.011

    44. [44]

      (44) Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C.; Brusso, J. L.; Dinca, L. E.; Vondracek, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F.; Perepichka, D. F. Chemical Science 2013, 4, 3263. doi: 10.1039/c3sc50800e

    45. [45]

      (45) Fan, Q.; Wang, T.; Liu, L.; Zhao, J.; Zhu, J.; Gottfried, J. M. J. Chem. Phys. 2015, 142, 101906. doi: 10.1063/1.4906214

    46. [46]

      (46) Fan, Q.; Wang, C.; Liu, L.; Han, Y.; Zhao, J.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M. J. Phys. Chem. C 2014, 118, 13018. doi: 10.1021/jp5037475

    47. [47]

      (47) Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. Chem. Commun. 2014, 50, 7680. doi: 10.1039/c4cc02757d

    48. [48]

      (48) Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Science 2009, 323, 1193. doi: 10.1126/science.1168255

    49. [49]

      (49) Bieri, M.; Treier, M.; Cai, J.; Ait-Mansour, K.; Ruffieux, P.; Groning, O.; Groning, P.; Kastler, M.; Rieger, R.; Feng, X.; Mullen, K.; Fasel, R. Chem. Commun. 2009, 6919.

    50. [50]

      (50) Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 832. doi: 10.1021/ja00864a031

    51. [51]

      (51) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Strunskus, T.; Wöll, C.; Dahlbom, M.; Hammer, B.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Angew. Chem. Int. Edit. 2007, 46, 9227.

    52. [52]

      (52) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Angew. Chem. 2008, 120, 4478.

    53. [53]

      (53) Weigelt, S.; Bombis, C.; Busse, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. ACS Nano 2008, 2, 651. doi: 10.1021/nn7004365

    54. [54]

      (54) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268. doi: 10.1126/science.1139915

    55. [55]

      (55) Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914. doi: 10.1021/ja0751781

    56. [56]

      (56) Ourdjini, O.; Pawlak, R.; Abel, M.; Clair, S.; Chen, L.; Bergeon, N.; Sassi, M.; Oison, V.; Debierre, J. M.; Coratger, R.; Porte, L. Phys. Rev. B 2011, 84, 125421. doi: 10.1103/PhysRevB. 84.125421

    57. [57]

      (57) Clair, S.; Ourdjini, O.; Abel, M.; Porte, L. Chem. Commun. 2011, 47, 8028. doi: 10.1039/c1cc12065d

    58. [58]

      (58) Streitwieser A.; Heathcock C. H. Introduction to Organic Chemistry, 3rd ed.; Macmillan: New York, 1985; pp 10–15.

    59. [59]

      (59) In't Veld, M.; Iavicoli, P.; Haq, S.; Amabilino, D. B.; Raval, R. Chem. Commun. 2008, 1536.

    60. [60]

      (60) Wiengarten, A.; Seufert, K.; Auwärter, W.; Ecija, D.; Diller, K.; Allegretti, F.; Bischoff, F.; Fischer, S.; Duncan, D. A.; Papageorgiou, A. C.; Klappenberger, F.; Acres, R. G.; Ngo, T. H.; Barth, J. V. J. Am. Chem. Soc. 2014, 136, 9346. doi: 10.1021/ja501680n

    61. [61]

      (61) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.; Räder, H. J.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 3139. doi: 10.1021/ja036732j

    62. [62]

      (62) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Nature 2010, 466, 470. doi: 10.1038/nature09211

    63. [63]

      (63) Björk, J.; Stafstro, M. S.; Hanke, F. J. Am. Chem. Soc. 2011, 133, 14884. doi: 10.1021/ja205857a

    64. [64]

      (64) Treier, M.; Pignedoli, C. A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Nat. Chem. 2011, 3, 61. doi: 10.1038/nchem.891

    65. [65]

      (65) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500. doi: 10.1126/science.1068427

    66. [66]

      (66) Gómez-Lor, B.; Echavarren, A. M. Org. Lett. 2004, 6, 2993. doi: 10.1021/ol048760s

    67. [67]

      (67) Amsharov, K.; Abdurakhmanova, N.; Stepanow, S.; Rauschenbach, S.; Jansen, M.; Kern, K. Angew. Chem. Int. Edit. 2010, 49, 9392. doi: 10.1002/anie.201005000

    68. [68]

      (68) Hay, A. S. The Journal of Organic Chemistry 1962, 27, 3320. doi: 10.1021/jo01056a511

    69. [69]

      (69) Eichhorn, J.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2013, 49, 2900. doi: 10.1039/c3cc40444g

    70. [70]

      (70) Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Edit. 2013, 52, 4024. doi: 10.1002/anie.v52.14

    71. [71]

      (71) Sánchez-Sánchez, C.; Yubero, F.; González-Elipe, A. R.; Feria, L.; Sanz, J. F.; Lambert, R. M. J. Phys. Chem. C 2014, 118, 11677.

    72. [72]

      (72) Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Nature 2001, 413, 619. doi: 10.1038/35098059

    73. [73]

      (73) Díaz Arado, O.; Mönig, H.; Wagner, H.; Franke, J. H.; Langewisch, G.; Held, P. A.; Studer, A.; Fuchs, H. ACS Nano 2013, 7, 8509. doi: 10.1021/nn4022789

    74. [74]

      (74) Treier, M.; Richardson, N. V.; Fasel, R. J. Am. Chem. Soc. 2008, 130, 14054. doi: 10.1021/ja805342n

    75. [75]

      (75) Marele, A. C.; Mas-Balleste, R.; Terracciano, L.; Rodriguez-Fernandez, J.; Berlanga, I.; Alexandre, S. S.; Otero, R.; Gallego, J. M.; Zamora, F.; Gomez-Rodriguez, J. M. Chem. Commun. 2012, 48, 6779. doi: 10.1039/c2cc32270f

    76. [76]

      (76) Sun, Q.; Zhang, C.; Li, Z.; Kong, H.; Tan, Q.; Hu, A.; Xu, W. J. Am. Chem. Soc. 2013, 135, 8448. doi: 10.1021/ja404039t

    77. [77]

      (77) Liu, J.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799. doi: 10.1021/cr900149d

    78. [78]

      (78) Dong, H.; Zheng, R.; Lam, J. W. Y.; Häussler, M.; Qin, A.; Tang, B. Z. Macromolecules 2005, 38, 6382. doi: 10.1021/ma050342v

    79. [79]

      (79) Yang, B.; Björk, J.; Lin, H.; Zhang, X.; Zhang, H.; Li, Y.; Fan, J.; Li, Q.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4904. doi: 10.1021/J. Am. Chem. Soc..5b00774

    80. [80]

      (80) Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Ait-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.; Müllen, K.; Fasel, R. J. Am. Chem. Soc. 2010, 132, 16669. doi: 10.1021/ja107947z

    81. [81]

      (81) Hammer, B.; Nørskov, J. K. Theoretical Surface Science and Catalysis—Calculations and Concepts. In Advances in Catalysis; Gatees, C. B, Knözinger, H. Eds.; Academic Press: San Diego, 2000; pp 71–129.

    82. [82]

      (82) Chen, M.; Xiao, J.; Steinrück, H. P.; Wang, S.; Wang, W.; Lin, N.; Hieringer, W.; Gottfried, J. M. J. Phys. Chem. C 2014, 118, 6820. doi: 10.1021/jp4121468

    83. [83]

      (83) Chung, K. H.; Koo, B. G.; Kim, H.; Yoon, J. K.; Kim, J. H.; Kwon, Y. K.; Kahng, S. J. Phys. Chem. Chem. Phys. 2012, 14, 7304. doi: 10.1039/c2cp23295b

    84. [84]

      (84) Zhang, H.; Franke, J. H.; Zhong, D.; Li, Y.; Timmer, A.; Arado, O. D.; Mönig, H.; Wang, H.; Chi, L.; Wang, Z.; Müllen, K.; Fuchs, H. Small 2013, 10, 1361.

    85. [85]

      (85) Zhang, H.; Lin, H.; Sun, K.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D.; Li, Y.; Müllen, K.; Fuchs, H.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4022. doi: 10.1021/ja511995r

    86. [86]

      (86) Walch, H.; Gutzler, R.; Sirtl, T.; Eder, G.; Lackinger, M. J. Phys. Chem. C 2010, 114, 12604. doi: 10.1021/jp102704q

    87. [87]

      (87) Matena, M.; Riehm, T.; Stöhr, M.; Jung, T. A.; Gade, L. H. Angew. Chem. Int. Edit. 2008, 47, 2414.

    88. [88]

      (88) Kolmer, M.; Ahmad Zebari, A. A.; Prauzner-Bechcicki, J. S.; Piskorz, W.; Zasada, F.; Godlewski, S.; Such, B.; Sojka, Z.; Szymonski, M. Angew. Chem. 2013, 125, 10490. doi: 10.1002/ange.201303657

    89. [89]

      (89) Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2009, 29, 4456.

    90. [90]

      (90) Bombis, C.; Ample, F.; Lafferentz, L.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Angew. Chem. Int. Edit. 2009, 48, 9966. doi: 10.1002/anie.v48:52

    91. [91]

      (91) Abel, M.; Clair, S.; Ourdjini, O.; Mossoyan, M.; Porte, L. J. Am. Chem. Soc. 2010, 133, 1203.

    92. [92]

      (92) Blunt, M. O.; Russell, J. C.; Champness, N. R.; Beton, P. H. Chem. Commun. 2010, 46, 7157. doi: 10.1039/c0cc01810d

    93. [93]

      (93) Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. ACS Nano 2013, 7, 8066. doi: 10.1021/nn403328h

    94. [94]

      (94) Eder, G.; Smith, E. F.; Cebula, I.; Heckl, W. M.; Beton, P. H.; Lackinger, M. ACS Nano 2013, 7, 3014. doi: 10.1021/nn400337v

    95. [95]

      (95) Sakaguchi, H.; Matsumura, H.; Gong, H.; Abouelwafa, A. M. Science 2005, 310, 1002. doi: 10.1126/science.1117990

  • 加载中
    1. [1]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    12. [12]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

Metrics
  • PDF Downloads(0)
  • Abstract views(424)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return