Citation: WANG Hong, ZHANG Hai-Ming, CHI Li-Feng. Surface Assisted Reaction under Ultra High Vacuum Conditions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 154-170. doi: 10.3866/PKU.WHXB201512041
-
The construction of covalently bonded molecular structures on single crystal metal surfaces has attracted increasing attention because of the synthetic strategies used and their potential application to molecular electronics and optoelectronics. Unlike traditional organic synthesis, surface-assisted reactions have advantages for structural control of the produced polymers, providing detailed understanding of reaction processes, and, most importantly, they produce new materials that cannot be synthesized by traditional means. The types of reactant, the choice of metal surface, and the initial conditions are critical controlling parameters in surface-assisted reactions. Covalent bonds formed in the reaction ensure that the produced structures have higher mechanical and thermodynamic stability compared with self-assembled monolayers (SAMs). Meanwhile, some conjugated polymers are ideal candidates for semiconductors in next-generation carbon-based electronics. In this review, we summarize the surface assisted reactions reported in recent years and analyze the mechanisms involved, comparing them with the corresponding reactions that occur in solution. Finally, we discuss the important role of substrate surface played in the reaction process.
-
-
[1]
(1) Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671. doi: 10.1038/nature04166
-
[2]
(2) Ciesielski, A.; Palma, C. A.; Bonini, M.; Samorì, P. Adv. Mater. 2010, 22, 3506. doi: 10.1002/adma.201001582
-
[3]
(3) Xie, Z. X.; Huang, Z. F.; Xu, X. Phys. Chem. Chem. Phys. 2002, 4, 1486. doi: 10.1039/b109159j
-
[4]
(4) Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mamdouh, W.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613. doi: 10.1021/ja0655441
-
[5]
(5) Griessl, S. J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M. Langmuir 2004, 20, 9403. doi: 10.1021/la049441c
-
[6]
(6) Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618. doi: 10.1038/nature07096
-
[7]
(7) Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Nature 2014, 507, 86. doi: 10.1038/nature12993
-
[8]
(8) Silly, F. J. Phys. Chem. C 2013, 117, 20244. doi: 10.1021/jp4057626
-
[9]
(9) Gutzler, R.; Ivasenko, O.; Fu, C.; Brusso, J. L.; Rosei, F.; Perepichka, D. F. Chem. Commun. 2011, 47, 9453.
-
[10]
(10) Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Nano Lett. 2007, 7, 3813. doi: 10.1021/nl072466m
-
[11]
(11) Shi, Z.; Lin, N. J. Am. Chem. Soc. 2009, 131, 5376. doi: 10.1021/ja900499b
-
[12]
(12) Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Chemistry -A European Journal 2009, 15, 7004. doi: 10.1002/chem. 200900900
-
[13]
(13) El Garah, M.; MacLeod, J. M.; Rosei, F. Surf. Sci. 2013, 613, 6. doi: 10.1016/j.susc.2013.03.015
-
[14]
(14) Franc, G.; Gourdon, A. Phys. Chem. Chem. Phys. 2011, 13, 14283. doi: 10.1039/c1cp20700h
-
[15]
(15) Lackinger, M.; Heckl, W. M. Journal of Physics D: Applied Physics 2011, 44, 464011. doi: 10.1088/0022-3727/44/46/464011
-
[16]
(16) Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Nat. Chem. 2012, 4, 215.
-
[17]
(17) Bieri, M.; Blankenburg, S.; Kivala, M.; Pignedoli, C. A.; Ruffieux, P.; Mullen, K.; Fasel, R. Chem. Commun. 2011, 47, 10239. doi: 10.1039/c1cc12490k
-
[18]
(18) Hla, S. W.; Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 2000, 85, 2777. doi: 10.1103/PhysRevLett.85.2777
-
[19]
(19) Dinca, L. E.; MacLeod, J. M.; Lipton-Duffin, J.; Fu, C.; Ma, D.; Perepichka, D. F.; Rosei, F. Chem. Commun. 2014, 50, 8791. doi: 10.1039/C4CC03719G
-
[20]
(20) Jiang, Y.; Huan, Q.; Fabris, L.; Bazan, G. C.; Ho, W. Nat. Chem. 2013, 5, 36.
-
[21]
(21) Basagni, A.; Colazzo, L.; Sedona, F.; DiMarino, M.; Carofiglio, T.; Lubian, E.; Forrer, D.; Vittadini, A.; Casarin, M.; Verdini, A.; Cossaro, A.; Floreano, L.; Sambi, M. Chemistry-A European Journal 2014, 20, 14296.
-
[22]
(22) Basagni, A.; Ferrighi, L.; Cattelan, M.; Nicolas, L.; Handrup, K.; Vaghi, L.; Papagni, A.; Sedona, F.; Valentin, C. D.; Agnoli, S.; Sambi, M. Chem. Commun. 2015, 51, 12593. doi: 10.1039/C5CC04317D
-
[23]
(23) Gao, H. Y.; Franke, J. H.; Wagner, H.; Zhong, D.; Held, P. A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2013, 117, 18595.
-
[24]
(24) Dong, L.; Liu, P. N.; Lin, N. Accounts Chem. Res. 2015, 48, 2765.
-
[25]
(25) Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nano 2007, 2, 687. doi: 10.1038/nnano.2007.346
-
[26]
(26) Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Nat. Commun. 2012, 3, 1286. doi: 10.1038/ncomms2291
-
[27]
(27) Zwaneveld, N. A. A.; Pawlak, R. M.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. J. Am. Chem. Soc. 2008, 130, 6678. doi: 10.1021/ja800906f
-
[28]
(28) Zhong, D.; Franke, J. H.; Podiyanachari, S. K.; Blömker, T.; Zhang, H.; Kehr, G.; Erker, G.; Fuchs, H.; Chi, L. Science 2011, 334, 213. doi: 10.1126/science.1211836
-
[29]
(29) Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. J. Am. Chem. Soc. 2013, 135, 2136. doi: 10.1021/ja312303a
-
[30]
(30) Otero, G.; Biddau, G.; Sanchez-Sanchez, C.; Caillard, R.; Lopez, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Mendez, J.; Echavarren, A. M.; Perez, R.; Gomez-Lor, B.; Martin-Gago, J. A. Nature 2008, 454, 865. doi: 10.1038/nature07193
-
[31]
(31) Kanuru, V. K.; Kyriakou, G.; Beaumont, S. K.; Papageorgiou, A. C.; Watson, D. J.; Lambert, R. M. J. Am. Chem. Soc. 2010, 132, 8081. doi: 10.1021/ja1011542
-
[32]
(32) Guan, C. Z.; Wang, D.; Wan, L. J. Chem. Commun. 2012, 48, 2943. doi: 10.1039/c2cc16892h
-
[33]
(33) Liu, X. H.; Guan, C. Z.; Ding, S.Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470. doi: 10.1021/ja403464h
-
[34]
(34) Liu, X. H.; Guan, C. Z.; Zheng, Q. N.; Wang, D.; Wan, L. J. J. Chem. Phys. 2015, 142, 101905. doi: 10.1063/1.4906271
-
[35]
(35) Xie, R.; Song, Y.; Wan, L.; Yuan, H.; Li, P.; Xiao, X.; Liu, L.; Ye, S.; Lei, S.; Wang, L. Anal. Sci. 2011, 27, 129. doi: 10.2116/analsci.27.129
-
[36]
(36) Gourdon, A. Angew. Chem. Int. Edit. 2008, 47, 6950. doi: 10.1002/anie.v47:37
-
[37]
(37) Ullmann, F.; Bielecki, J. Berichte der Deutschen Chemischen Gesellschaft 1901, 34, 2174.
-
[38]
(38) Xi, M.; Bent, B. E. Surf. Sci. 1992, 278, 19. doi: 10.1016/0039-6028(92)90580-Y
-
[39]
(39) Xi, M.; Bent, B. E. J. Am. Chem. Soc. 1993, 115, 7426. doi: 10.1021/ja00069a048
-
[40]
(40) Blake, M. M.; Nanayakkara, S. U.; Claridge, S. A.; Fernández-Torres, L. C.; Sykes, E. C. H.; Weiss, P. S. J. Phys. Chem. A 2009, 113, 13167. doi: 10.1021/jp903590c
-
[41]
(41) Lipton-Duffin, J. A.; Ivasenko, O.; Perepichka, D. F.; Rosei, F. Small 2009, 5, 592. doi: 10.1002/smll.v5:5
-
[42]
(42) Wang, W.; Shi, X.; Wang, S.; Van Hove, M. A.; Lin, N. J. Am. Chem. Soc. 2011, 133, 13264. doi: 10.1021/ja204956b
-
[43]
(43) Koch, M.; Gille, M.; Viertel, A.; Hecht, S.; Grill, L. Surf. Sci. 2014, 627, 70. doi: 10.1016/j.susc.2014.04.011
-
[44]
(44) Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C.; Brusso, J. L.; Dinca, L. E.; Vondracek, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F.; Perepichka, D. F. Chemical Science 2013, 4, 3263. doi: 10.1039/c3sc50800e
-
[45]
(45) Fan, Q.; Wang, T.; Liu, L.; Zhao, J.; Zhu, J.; Gottfried, J. M. J. Chem. Phys. 2015, 142, 101906. doi: 10.1063/1.4906214
-
[46]
(46) Fan, Q.; Wang, C.; Liu, L.; Han, Y.; Zhao, J.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M. J. Phys. Chem. C 2014, 118, 13018. doi: 10.1021/jp5037475
-
[47]
(47) Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. Chem. Commun. 2014, 50, 7680. doi: 10.1039/c4cc02757d
-
[48]
(48) Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Science 2009, 323, 1193. doi: 10.1126/science.1168255
-
[49]
(49) Bieri, M.; Treier, M.; Cai, J.; Ait-Mansour, K.; Ruffieux, P.; Groning, O.; Groning, P.; Kastler, M.; Rieger, R.; Feng, X.; Mullen, K.; Fasel, R. Chem. Commun. 2009, 6919.
-
[50]
(50) Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 832. doi: 10.1021/ja00864a031
-
[51]
(51) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Strunskus, T.; Wöll, C.; Dahlbom, M.; Hammer, B.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Angew. Chem. Int. Edit. 2007, 46, 9227.
-
[52]
(52) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Angew. Chem. 2008, 120, 4478.
-
[53]
(53) Weigelt, S.; Bombis, C.; Busse, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. ACS Nano 2008, 2, 651. doi: 10.1021/nn7004365
-
[54]
(54) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268. doi: 10.1126/science.1139915
-
[55]
(55) Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914. doi: 10.1021/ja0751781
-
[56]
(56) Ourdjini, O.; Pawlak, R.; Abel, M.; Clair, S.; Chen, L.; Bergeon, N.; Sassi, M.; Oison, V.; Debierre, J. M.; Coratger, R.; Porte, L. Phys. Rev. B 2011, 84, 125421. doi: 10.1103/PhysRevB. 84.125421
-
[57]
(57) Clair, S.; Ourdjini, O.; Abel, M.; Porte, L. Chem. Commun. 2011, 47, 8028. doi: 10.1039/c1cc12065d
-
[58]
(58) Streitwieser A.; Heathcock C. H. Introduction to Organic Chemistry, 3rd ed.; Macmillan: New York, 1985; pp 10–15.
-
[59]
(59) In't Veld, M.; Iavicoli, P.; Haq, S.; Amabilino, D. B.; Raval, R. Chem. Commun. 2008, 1536.
-
[60]
(60) Wiengarten, A.; Seufert, K.; Auwärter, W.; Ecija, D.; Diller, K.; Allegretti, F.; Bischoff, F.; Fischer, S.; Duncan, D. A.; Papageorgiou, A. C.; Klappenberger, F.; Acres, R. G.; Ngo, T. H.; Barth, J. V. J. Am. Chem. Soc. 2014, 136, 9346. doi: 10.1021/ja501680n
-
[61]
(61) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.; Räder, H. J.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 3139. doi: 10.1021/ja036732j
-
[62]
(62) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Nature 2010, 466, 470. doi: 10.1038/nature09211
-
[63]
(63) Björk, J.; Stafstro, M. S.; Hanke, F. J. Am. Chem. Soc. 2011, 133, 14884. doi: 10.1021/ja205857a
-
[64]
(64) Treier, M.; Pignedoli, C. A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Nat. Chem. 2011, 3, 61. doi: 10.1038/nchem.891
-
[65]
(65) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500. doi: 10.1126/science.1068427
-
[66]
(66) Gómez-Lor, B.; Echavarren, A. M. Org. Lett. 2004, 6, 2993. doi: 10.1021/ol048760s
-
[67]
(67) Amsharov, K.; Abdurakhmanova, N.; Stepanow, S.; Rauschenbach, S.; Jansen, M.; Kern, K. Angew. Chem. Int. Edit. 2010, 49, 9392. doi: 10.1002/anie.201005000
-
[68]
(68) Hay, A. S. The Journal of Organic Chemistry 1962, 27, 3320. doi: 10.1021/jo01056a511
-
[69]
(69) Eichhorn, J.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2013, 49, 2900. doi: 10.1039/c3cc40444g
-
[70]
(70) Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Edit. 2013, 52, 4024. doi: 10.1002/anie.v52.14
-
[71]
(71) Sánchez-Sánchez, C.; Yubero, F.; González-Elipe, A. R.; Feria, L.; Sanz, J. F.; Lambert, R. M. J. Phys. Chem. C 2014, 118, 11677.
-
[72]
(72) Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Nature 2001, 413, 619. doi: 10.1038/35098059
-
[73]
(73) Díaz Arado, O.; Mönig, H.; Wagner, H.; Franke, J. H.; Langewisch, G.; Held, P. A.; Studer, A.; Fuchs, H. ACS Nano 2013, 7, 8509. doi: 10.1021/nn4022789
-
[74]
(74) Treier, M.; Richardson, N. V.; Fasel, R. J. Am. Chem. Soc. 2008, 130, 14054. doi: 10.1021/ja805342n
-
[75]
(75) Marele, A. C.; Mas-Balleste, R.; Terracciano, L.; Rodriguez-Fernandez, J.; Berlanga, I.; Alexandre, S. S.; Otero, R.; Gallego, J. M.; Zamora, F.; Gomez-Rodriguez, J. M. Chem. Commun. 2012, 48, 6779. doi: 10.1039/c2cc32270f
-
[76]
(76) Sun, Q.; Zhang, C.; Li, Z.; Kong, H.; Tan, Q.; Hu, A.; Xu, W. J. Am. Chem. Soc. 2013, 135, 8448. doi: 10.1021/ja404039t
-
[77]
(77) Liu, J.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799. doi: 10.1021/cr900149d
-
[78]
(78) Dong, H.; Zheng, R.; Lam, J. W. Y.; Häussler, M.; Qin, A.; Tang, B. Z. Macromolecules 2005, 38, 6382. doi: 10.1021/ma050342v
-
[79]
(79) Yang, B.; Björk, J.; Lin, H.; Zhang, X.; Zhang, H.; Li, Y.; Fan, J.; Li, Q.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4904. doi: 10.1021/J. Am. Chem. Soc..5b00774
-
[80]
(80) Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Ait-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.; Müllen, K.; Fasel, R. J. Am. Chem. Soc. 2010, 132, 16669. doi: 10.1021/ja107947z
-
[81]
(81) Hammer, B.; Nørskov, J. K. Theoretical Surface Science and Catalysis—Calculations and Concepts. In Advances in Catalysis; Gatees, C. B, Knözinger, H. Eds.; Academic Press: San Diego, 2000; pp 71–129.
-
[82]
(82) Chen, M.; Xiao, J.; Steinrück, H. P.; Wang, S.; Wang, W.; Lin, N.; Hieringer, W.; Gottfried, J. M. J. Phys. Chem. C 2014, 118, 6820. doi: 10.1021/jp4121468
-
[83]
(83) Chung, K. H.; Koo, B. G.; Kim, H.; Yoon, J. K.; Kim, J. H.; Kwon, Y. K.; Kahng, S. J. Phys. Chem. Chem. Phys. 2012, 14, 7304. doi: 10.1039/c2cp23295b
-
[84]
(84) Zhang, H.; Franke, J. H.; Zhong, D.; Li, Y.; Timmer, A.; Arado, O. D.; Mönig, H.; Wang, H.; Chi, L.; Wang, Z.; Müllen, K.; Fuchs, H. Small 2013, 10, 1361.
-
[85]
(85) Zhang, H.; Lin, H.; Sun, K.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D.; Li, Y.; Müllen, K.; Fuchs, H.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4022. doi: 10.1021/ja511995r
-
[86]
(86) Walch, H.; Gutzler, R.; Sirtl, T.; Eder, G.; Lackinger, M. J. Phys. Chem. C 2010, 114, 12604. doi: 10.1021/jp102704q
-
[87]
(87) Matena, M.; Riehm, T.; Stöhr, M.; Jung, T. A.; Gade, L. H. Angew. Chem. Int. Edit. 2008, 47, 2414.
-
[88]
(88) Kolmer, M.; Ahmad Zebari, A. A.; Prauzner-Bechcicki, J. S.; Piskorz, W.; Zasada, F.; Godlewski, S.; Such, B.; Sojka, Z.; Szymonski, M. Angew. Chem. 2013, 125, 10490. doi: 10.1002/ange.201303657
-
[89]
(89) Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2009, 29, 4456.
-
[90]
(90) Bombis, C.; Ample, F.; Lafferentz, L.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Angew. Chem. Int. Edit. 2009, 48, 9966. doi: 10.1002/anie.v48:52
-
[91]
(91) Abel, M.; Clair, S.; Ourdjini, O.; Mossoyan, M.; Porte, L. J. Am. Chem. Soc. 2010, 133, 1203.
-
[92]
(92) Blunt, M. O.; Russell, J. C.; Champness, N. R.; Beton, P. H. Chem. Commun. 2010, 46, 7157. doi: 10.1039/c0cc01810d
-
[93]
(93) Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. ACS Nano 2013, 7, 8066. doi: 10.1021/nn403328h
-
[94]
(94) Eder, G.; Smith, E. F.; Cebula, I.; Heckl, W. M.; Beton, P. H.; Lackinger, M. ACS Nano 2013, 7, 3014. doi: 10.1021/nn400337v
-
[95]
(95) Sakaguchi, H.; Matsumura, H.; Gong, H.; Abouelwafa, A. M. Science 2005, 310, 1002. doi: 10.1126/science.1117990
-
[1]
-
-
[1]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[2]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[3]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[4]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[5]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[6]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[7]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[8]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[9]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[10]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[11]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[12]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[13]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[14]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[15]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[16]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[17]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[18]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[19]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[20]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(423)
- HTML views(55)