Citation:
WEI Hui-Yun, WANG Guo-Shuai, WU Hui-Jue, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo. Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 201-213.
doi:
10.3866/PKU.WHXB201512031
-
Quantum dot-sensitized solar cells (QDSCs) have attracted much attention in the past few years because of the advantages of quantum dots (QDs), including low cost, easy fabrication, size-dependence bandgap, and multiple exciton generation (MEG). The properties of QD sensitizers influence the performance of QDSCs, such as their photoelectric characteristics, preparation methods, surface defects, chemical stability, and their sensitization towards TiO2 photoanodes. This review demonstrates the development of QD sensitizers, including narrow bandgap binary QDs, ternary or quaternary alloyed QDs, and Type-II core-shell QDs, especially the preparation methods of colloidal QDs. Furthermore, the deposition and sensitization methods of QDs are introduced in detail, particularly bifunctional-assisted self-assembly deposition. Meanwhile, methods to improve electron injection efficiency and reduce charge recombination are also summarized. Finally, a brief introduction is provided to the development of electrolytes and counter electrodes in QDSCs.
-
-
-
[1]
(1) Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338. doi: 10.1021/j100071a026
-
[2]
(2) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. doi: 10.1021/cm034081k
-
[3]
(3) Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. Nat. Phys. 2005, 1, 189. doi: 10.1038/nphys151
-
[4]
(4) Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 908. doi: 10.1021/jz400052e
-
[5]
(5) Bai, Y.; Mora-Sero, I.; Angelis, F. D.; Bisquert, J.; Wang, P. Chem. Rev. 2014, 114, 10095. doi: 10.1021/cr400606n
-
[6]
(6) Garey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Chem. Rev. 2015, 115, 12732. doi: 10.1021/acs.chemrev.5b00063.
-
[7]
(7) Hodes, G. J. Phys. Chem. C 2008, 112, 17778. doi: 10.1021/jp803310s
-
[8]
(8) Piliego, C.; Protesescu, L.; Bisri, S. Z.; Kovalenko, M. V.; Loi, M. A. Energy Environ. Sci. 2013, 6, 3054. doi: 10.1039/c3ee41479e
-
[9]
(9) Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. doi: 10.1021/j100063a022
-
[10]
(10) Zhao, K.; Pan, Z.; Mora-Sero, I.; Canovas, E.; Wang, H.; Song, Y.; Gong, X.; Wang, J.; Bonn, M.; Bisquert, J.; Zhong, X. J. Am. Chem. Soc. 2015, 137, 5602.
-
[11]
(11) Kim, J. Y.; Yang, J.; Yu, J. H.; Baek, W.; Lee, C. H.; Son, H. J.; Hyeon, T.; Ko, M. J. ACS Nano 2015, 9, 11286.
-
[12]
(12) Wei, H.; Wang, G.; Luo, Y.; Li, D.; Meng, Q. Electrochim. Acta 2015, 173, 156. doi: 10.1016/j.electacta.2015.05.052
-
[13]
(13) Mathew, S.; Yella, A.; Cao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/nchem.1861
-
[14]
(14) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys. 2008, 103, 084304. doi: 10.1063/1.2903059
-
[15]
(15) Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116. doi: 10.1063/1.2757130
-
[16]
(16) Toyoda, T.; Yindeesuk, W.; Okuno, T.; Akimoto, M.; Kamiyayama, K.; Hayase, S.; Shen, Q. RSC Adv. 2015, 5, 49623. doi: 10.1039/C5RA07092A
-
[17]
(17) Toyoda, T.; Oshikane, K.; Li, D.; Luo, Y.; Meng, Q.; Shen, Q. Appl. Phys. 2010, 108, 114304. doi: 10.1063/1.3517066
-
[18]
(18) Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k
-
[19]
(19) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.v19:4
-
[20]
(20) Xu, Y.; Wu, W.; Rao, H.; Chen, H.; Kuang, D.; Su, C. Nano Energy 2015, 11, 621. doi: 10.1016/j.nanoen.2014.11.045
-
[21]
(21) Bai, Y.; Han, C.; Chen, X.; Yu, H.; Zong, X.; Li, Z.; Wang, L. Nano Energy 2015, 13, 609. doi: 10.1016/j.nanoen.2015.04.002
-
[22]
(22) Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, Y.; Zhong, X. ACS Nano 2012, 6, 3982. doi: 10.1021/nn300278z
-
[23]
(23) Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, 63. doi: 10.1126/science.1191462
-
[24]
(24) Zhang, J.; Cao, J.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. Nano Lett. 2014, 14, 6010. doi: 10.1021/nl503085v
-
[25]
(25) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J. N.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845
-
[26]
(26) Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. Q.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488. doi: 10.1021/nl802476m
-
[27]
(27) Braga, A.; Gimenez, S.; Concina, I.; Vomiero, A.; Mora-Sero, I. J. Phys. Chem. Lett. 2011, 2, 454. doi: 10.1021/jz2000112
-
[28]
(28) González-Pedro, V.; Sima, C.; Marzari, G.; Boix, P. P.; Giménez, S.; Shen, Q.; Dittrich, T.; Mora-Seró, I. Phys. Chem. Chem. Phys. 2013, 15, 13835. doi: 10.1039/c3cp51651b
-
[29]
(29) Zhou, N.; Chen, G.; Zhang, X.; Cheng, L.; Luo, Y.; Li, D.; Meng, Q. Electrochem. Commun. 2012, 2, 454.
-
[30]
(30) Zhou, N.; Yang, Y.; Huang, X.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. ChemSusChem 2013, 6, 687. doi: 10.1002/cssc.201200763
-
[31]
(31) Lee, J. W.; Son, D. Y.; Ahn, T. K.; Shin, H. W.; Kim, I. Y.; Hwang, S. J.; Ko, M. J.; Sul, S.; Han, H.; Park, N. G. Scientific Reports 2013, 3, 1050.
-
[32]
(32) Zhang, J.; Gao, J.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. Nano Lett. 2014, 14, 6010. doi: 10.1021/nl503085v
-
[33]
(33) Rhee, J. H.; Chung, C. C.; Diau, E. W. G. NPG Asia Mater 2013, 5, e68.
-
[34]
(34) Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. doi: 10.1021/nn900324q
-
[35]
(35) Yu, P. R.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. doi: 10.1021/jp064817b
-
[36]
(36) Laghumavarapu, R. B.; El-Emawy, M.; Nuntawong, N.; Moscho, A.; Lester, L. F.; Huffaker, D. L. Appl. Phys. Lett. 2007, 91, 243115. doi: 10.1063/1.2816904
-
[37]
(37) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261
-
[38]
(38) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A
-
[39]
(39) McDaniel, H.; Fuke, N.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. Nat. Commun. 2013, 4, 2887.
-
[40]
(40) Bai, B.; Kou, D.; Zhou, W.; Zhou, Z.; Wu, S. Green Chem. 2015, 17, 4377. doi: 10.1039/C5GC01049G
-
[41]
(41) Kim, S.; Kang, M.; Kim, S.; Heo, J. H.; Noh, J. H.; Im, S. H.; Seok, S.; Kim, S. W. ACS Nano 2013, 7, 4756. doi: 10.1021/nn401274e
-
[42]
(42) McDaniel, H.; Fuke, N.; Pietryga, J. M.; Klimov, V. I. J. Phys. Chem. Lett. 2013, 4, 355. doi: 10.1021/jz302067r
-
[43]
(43) Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X. ACS Nano 2013, 7, 5215. doi: 10.1021/nn400947e
-
[44]
(44) Luo, J.; Wei, H.; Li, F.; Huang, Q.; Li, D.; Luo, Y.; Meng, Q. Chem. Commun. 2014, 50, 3464. doi: 10.1039/c3cc49335k
-
[45]
(45) Zhu, D. H.; Zhong, R.; Cao, Y.; Peng, Z. H.; Feng, A. X.; Xiang, W. D.; Zhao, J. L. Acta Phys. -Chim. Sin. 2014, 30, 1861. [朱德华, 钟蓉, 曹宇, 彭志辉, 冯爱新, 向卫东, 赵家龙. 物理化学学报, 2014, 30, 1861.] doi: 10.3866/PKU.WHXB201408044
-
[46]
(46) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A
-
[47]
(47) Pan, Z.; Mora-Sero, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X.; Bisquert, J. J. Am. Chem. Soc. 2014, 136, 9203. doi: 10.1021/ja504310w
-
[48]
(48) Kim, S.; Kang, M.; Kim, S.; Heo, J. H.; Noh, J. H.; Im, S. H.; Seok, S. I.; Kim, S. W. ACS Nano 2013, 7, 4756.
-
[49]
(49) Luo, J.; Wei, H.; Huang, Q.; Hu, X.; Zhao, H.; Yu, R.; Li, D.; Luo, Y.; Meng, Q. Chem. Commun. 2013, 49, 3881.
-
[50]
(50) Jiao, S.; Shen, Q.; Mora-Sero, I.; Wang, J.; Pan, Z.; Zhao, K.; Kuga, Y.; Zhong, X.; Bisquert, J. ACS Nano 2015, 9, 908. doi: 10.1021/nn506638n
-
[51]
(51) Wang, J.; Mora-Sero, I.; Pan, Z.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. J. Am. Chem. Soc. 2013, 135, 15913. doi: 10.1021/ja4079804
-
[52]
(52) Sahasrabudhe, A.; Bhattacharyya, S. Chem. Mater. 2015, 27, 4848. doi: 10.1021/acs.chemmater.5b01731
-
[53]
(53) Itzhakov, S.; Shen, H.; Buhbut, S.; Lin, H.; Oron, D. J. Phys. Chem. C 2013, 117, 22203. doi: 10.1021/jp312190x
-
[54]
(54) Zhang, Q.; Chen, G.; Yang, Y.; Shen, X.; Zhang, Y.; Li, C.; Yu, R.; Luo, Y.; Li, D.; Meng, Q. Phys. Chem. Chem. Phys. 2012, 16, 6479.
-
[55]
(55) Park, J. H.; Kim, D. H.; Shin, S. S.; Han, H. S.; Lee, M. H.; Jung, H. S.; Noh, J. H.; Hong, K. S. Adv. Energy Mater. 2014, 4, 1300395.
-
[56]
(56) Lin, Y.; Meng, Y.; Tu, Y.; Zhang, X. Opt. Commun. 2015, 346, 64. doi: 10.1016/j.optcom.2015.02.031
-
[57]
(57) Xiao, J.; Huang, Q.; Xu, J.; Li, C.; Chen, G.; Luo, Y.; Li, D.; Meng, Q. J. Phys. Chem. C 2014, 118, 4007. doi: 10.1021/jp411922e
-
[58]
(58) Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. ACS Nano 2011, 5, 3172. doi: 10.1021/nn200315b
-
[59]
(59) Hossain, M. A.; Koha, Z. Y.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7367. doi: 10.1039/c2cp40551b
-
[60]
(60) Tian, J.; Lv, L.; Wang, X.; Fei, C.; Liu, X.; Zhao, Z.; Wang, Y.; Cao, G. J. Phys. Chem. C 2014, 118, 16611. doi: 10.1021/jp412525k
-
[61]
(61) Li, C.; Yang, L.; Xiao, J.; Wu, Y. C.; Sondergaard, M.; Luo, Y.; Li, D.; Meng, Q.; Iversen, B. B. Phys. Chem. Chem. Phys. 2013, 15, 8710. doi: 10.1039/c3cp50365h
-
[62]
(62) Zhu, Z.; Qiu, J.; Yan, K.; Yang, S. ACS Appl. Mater. Interfaces 2013, 5, 4000.
-
[63]
(63) Yan, K.; Zhang, L.; Qiu, J.; Qiu, Y.; Zhu, Z.; Wang, J.; Yang, S. J. Am. Chem. Soc. 2013, 135, 9531. doi: 10.1021/ja403756s
-
[64]
(64) Tian, J.; Lv, L.; Fei, C.; Wang, Y.; Liu, X.; Cao, G. J. Mater. Chem. A 2014, 2, 19653. doi: 10.1039/C4TA04534C
-
[65]
(65) Li, W. J.; Zhong, X. H. J. Phys. Chem. Lett. 2015, 6, 796. doi: 10.1021/acs.jpclett.5b00001
-
[66]
(66) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 722. doi: 10.1021/jz400181m
-
[67]
(67) Yu, X.; Liao, J.; Qiu, K.; Kuang, D.; Su, C. ACS Nano 2011, 5, 9494. doi: 10.1021/nn203375g
-
[68]
(68) Li, W. J.; Zhong, X. H. Acta Phys. Sin. 2015, 64, 038806. [李文杰, 钟新华. 物理学报, 2015, 64, 038806.]
-
[69]
(69) Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. J. Mater. Chem. 2011, 21, 15903. doi: 10.1039/c1jm12629f
-
[70]
(70) Li, W.; Pan, Z.; Zhong, X. J. Mater. Chem. A 2015, 3, 1649. doi: 10.1039/C4TA05134C
-
[71]
(71) Yang, J.; Oshima, T.; Yindeesuk, W.; Pan, Z.; Zhong, X.; Shen, Q. J. Mater. Chem. A 2014, 2, 20882. doi: 10.1039/C4TA04353G
-
[72]
(72) Gopi, C. V. V. M.; Venkata-Haritha, M.; Kim, S. K.; Kim, H. J. Nanoscale 2015, 7, 12552. doi: 10.1039/C5NR03291A
-
[73]
(73) Mu, L.; Liu, C.; Jia, J.; Zhou, X.; Lin, Y. J. Mater. Chem. A 2013, 1, 8353. doi: 10.1039/c3ta11780d
-
[74]
(74) Hod, I.; Zaban, A. Langmuir 2014, 30, 7264. doi: 10.1021/la403768j
-
[75]
(75) Roelofs, K. E.; Brennan, T. P.; Dominguez, J. C.; Bailie, C. D.; Margulis, G. Y.; Hoke, E. T.; McGehee, M. D.; Bent, S. F. J. Phys. Chem. C 2013, 117, 5584. doi: 10.1021/jp311846r
-
[76]
(76) Yu, K.; Lin, X.; Lu, G.; Wen, Z.; Yuan, C.; Chen, J. RSC Adv. 2012, 2, 7843. doi: 10.1039/c2ra20979a
-
[77]
(77) Chen, Z.; Peng, W.; Zhang, K.; Zhang, K.; Zhang, J.; Yang, X.; Numata, Y.; Han, L. J. Mater. Chem. A 2014, 2, 7004.
-
[78]
(78) Niu, G.; Li, N.; Wang, L.; Li, W.; Qiu, Y. Phys. Chem. Chem. Phys. 2014, 16, 18327. doi: 10.1039/C4CP02520B
-
[79]
(79) Huang, J.; Yuan, C.; Chen, H.; Sun, J.; Sun, L.; Ågren, H. ACS Appl. Mater. Interfaces 2014, 6, 18808. doi: 10.1021/am504536a
-
[80]
(80) Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Sun, L.; Ågren, H. Chem. Eur. J. 2011, 17, 6330. doi: 10.1002/chem.201003527
-
[81]
(81) Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Anders, H.; Sun, L. J. Am. Chem. Soc. 2011, 133, 8450.
-
[82]
(82) Ning, Z.; Yuan, C.; Tian, H.; Fu, Y.; Li, L.; Sun, L.; Ågren, H. J. Mater. Chem. 2012, 22, 6032. doi: 10.1039/c2jm15857d
-
[83]
(83) Shu, T. Chem. Engineer 2013, 4, 42. [舒婷. 化学工程师, 2013, 4, 42.]
-
[84]
(84) Yu, Z.; Zhang, Q.; Qin, D; Luo, Y; Li, D.; Shen, Q.; Toyoda, T.; Meng, Q. Electrochem. Commun. 2012, 12, 1776.
-
[85]
(85) Wang, S.; Zhang, Q.; Xu, Y.; Li, D.; Luo, Y.; Meng, Q. J. Power Sources 2013, 224, 152. doi: 10.1016/j.jpowsour. 2012.09.044
-
[86]
(86) Yang, Y.; Wang, W. J. Power Sources 2015, 285, 70.
-
[87]
(87) Liu, L.; Liu, C.; Fu, W.; Deng, L.; Zhong, H. ChemPhysChem doi: 10.1002/cphc.201500627.
-
[88]
(88) Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2012, 4, 6162. doi: 10.1021/am301787q
-
[89]
(89) Yang, Z.; Chen, C. Y.; Liu, C. W.; Chang, H. T. Chem. Commun. 2010, 46, 5485. doi: 10.1039/c0cc00642d
-
[90]
(90) Punnoose, D.; Kim, H. J.; Rao, S. S.; Kumar, CH. S. S. P. J. Elecreoanal. Chem. 2015, 750, 19. doi: 10.1016/j.jelechem.2015.05.003
-
[91]
(91) Kim, H. J.; Kim, D. J.; Rao, S. S.; Savariraj, A. D.; Soo-Kyoung, K.; Son, M. K.; Gopi, C. V. V. M.; Prabakar, K. Electrochim. Acta 2014, 127, 427. doi: 10.1016/j.electacta.2014.02.019
-
[92]
(92) Gopi, C. V. V. M.; Rao, S. S.; Soo-Kyoung, K.; Punnoose, D.; Kim, H. J. J. Power Sources 2015, 275, 547. doi: 10.1016/j.jpowsour.2014.11.038
-
[93]
(93) Zhang, X.; Huang, X.; Yang, Y.; Wang, S.; Gong, Y.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2013, 5, 5954. doi: 10.1021/am400268j
-
[94]
(94) Deng, M.; Huang, S.; Zhang, Q.; Li, D.; Luo, Y.; Meng, Q. Chem. Lett. 2010, 39, 1168. doi: 10.1246/cl.2010.1168
-
[95]
(95) Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2012, 4, 6162. doi: 10.1021/am301787q
-
[96]
(96) Li, D.; Cheng, L.; Zhang, Y.; Zhang, Q.; Huang, X.; Luo, Y.; Meng, Q. Sol. Energy Mater. Sol. Cells 2014, 120, 454. doi: 10.1016/j.solmat.2013.09.025
-
[97]
(97) Kim, H. J.; Myung-Sik, L.; Gopi, C. V. V. M.; Venkata-Haritha, M.; Rao, S. S.; Kim, S. K. Dalton Trans. 2015, 44, 11340. doi: 10.1039/C5DT01412C
-
[98]
(98) Sung, S. D.; Lim, I.; Kang, P.; Lee, C.; Lee, W. I. Chem. Commun. 2013, 49, 6054. doi: 10.1039/c3cc40754c
-
[99]
(99) Radich, J. G.; Dwyer, R.; Kamat, P. V. J. Phys. Chem. Lett. 2011, 2, 2453. doi: 10.1021/jz201064k
-
[100]
(100) Seol, M.; Youn, D. H.; Kim, J. Y.; Jang, J. W.; Choi, M.; Lee, J. S.; Yong, K. Adv. Energy Mater. 2014, 4, 1300775.
-
[101]
(101) Choi, H. M.; Ji, I. A.; Bang, J. H. ACS Appl. Mater. Interfaces 2014, 6, 2335. doi: 10.1021/am404355m
-
[1]
-
-
-
[1]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[2]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[3]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-. doi: 10.1016/j.actphy.2025.100098
-
[4]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[5]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[6]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[7]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-. doi: 10.1016/j.actphy.2025.100109
-
[8]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-. doi: 10.1016/j.actphy.2025.100116
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[11]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[12]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[13]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[14]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[15]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-. doi: 10.1016/j.actphy.2025.100106
-
[16]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[17]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[18]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[19]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[20]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(620)
- HTML views(59)