Citation:
SU Neil-Qiang, CHEN Jun, XU Xin, ZHANG Dong-H. Quantum Reaction Dynamics Based on a New Generation Density Functional and Neural Network Potential Energy Surfaces[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 119-130.
doi:
10.3866/PKU.WHXB201512011
-
Recent progresses on a new generation density functional XYG3 and the construction of potential energy surfaces using neural networks are reviewed in this article. Using H3 and CH5 systems as illustrative examples, it is concluded that highly reliable dynamics results can be obtained from the combination of electronic structure calculations based on efficient and accurate density functionals and accurate potential energy surfaces using neural networks. It holds promise for future applications in larger and more complicated systems.
-
-
-
[1]
(1) Yang, X. M. Int. Rev. Phys. Chem. 2005, 24, 37. doi: 10.1080/01442350500163806
-
[2]
(2) Yang, X. M. Annu. Rev. Phys. Chem. 2007, 58, 433. doi: 10.1146/annurev.physchem.58.032806.104632
-
[3]
(3) Clary, D. C. Science 2008, 321, 789. doi: 10.1126/science.1157718
-
[4]
(4) Zhang, D. H.; Collins, M.; Lee, S. Science 2000, 290, 961. doi: 10.1126/science.290.5493.961
-
[5]
(5) Wu, T.; Werner, H. J.; Manthe, U. Science 2004, 306, 2227. doi: 10.1126/science.1104085
-
[6]
(6) Guo, H. Int. Rev. Phys. Chem. 2012, 31, 1. doi: 10.1080/0144235X.2011.649999
-
[7]
(7) Harich, S. A.; Dai, D. X.; Wang, C. C.; Yang, X. M.; Chao, S. D.; Skodje, R. T. Nature 2002, 419, 281. doi: 10.1038/nature01068
-
[8]
(8) Dai, D. X.; Wang, C. C.; Harich, S. A.; Wang, X. Y.; Yang, X. M.; Chao, S. D.; Skodje, R. T. Science 2003, 300, 1730. doi: 10.1126/science.1084041
-
[9]
(9) Qiu, M. H.; Ren, Z. F.; Che, L.; Dai, D. X.; Harich, S. A.; Wang, X. Y.; Yang, X. M.; Xu, C. X.; Xie, D. Q.; Gustafsson, M.; Skodje, R. T.; Sun, Z. G.; Zhang, D. H. Science 2006, 311, 1440. doi: 10.1126/science.1123452
-
[10]
(10) Che, L.; Ren, Z. F.; Wang, X. G.; Dong, W. R.; Dai, D. X.; Wang, X. Y.; Zhang, D. H.; Yang, X. M.; Sheng, L. S.; Li, G. L.; Werner, H. J.; Lique, F.; Alexander, M. H. Science 2007, 317, 1061. doi: 10.1126/science.1144984
-
[11]
(11) Wang, X. A.; Dong, W. R.; Xiao, C. L.; Che, L.; Ren, Z. F.; Dai, D. X.; Wang, X. Y.; Casavecchia, P.; Yang, X. M.; Jiang, B.; Xie, D. Q.; Sun, Z. G.; Lee, S. Y.; Zhang, D. H.; Werner, H. J.; Alexander, M. H. Science 2008, 322, 573. doi: 10.1126/science.1163195
-
[12]
(12) Dong, W. R.; Xiao, C. L.; Wang, T.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2010, 327, 1501. doi: 10.1126/science.1185694
-
[13]
(13) Xiao, C. L.; Xu, X.; Liu, S.; Wang, T.; Dong, W. R.; Yang, T. G.; Sun, Z. G.; Dai, D. X.; Xu, X.; Zhang, D. H.; Yang, X. M. Science 2011, 333, 440. doi: 10.1126/science.1205770
-
[14]
(14) Wang, T.; Chen, J.; Yang, T. G.; Xiao, C. L.; Sun, Z. G.; Huang, L.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2013, 342, 1499. doi: 10.1126/science.1246546
-
[15]
(15) Yang, T. G.; Chen, J.; Huang, L.; Wang, T.; Xiao, C. L.; Sun, Z. G.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2015, 347, 60. doi: 10.1126/science.1260527
-
[16]
(16) Chen, J.; Sun, Z. G.; Zhang, D. H. J. Chem. Phys. 2015, 142, 024303. doi: 10.1063/1.4904546
-
[17]
(17) Ischtwan, J.; Collins, M. J. Chem. Phys. 1994, 100, 8080. doi: 10.1063/1.466801
-
[18]
(18) Thompson, K. C.; Jordan, M.; Collins, M. J. Chem. Phys. 1998, 108, 564. doi: 10.1063/1.475419
-
[19]
(19) Bettens, R.; Collins, M. J. Chem. Phys. 1999, 111, 816. doi: 10.1063/1.479368
-
[20]
(20) Collins, M.; Zhang, D. H. J. Chem. Phys. 1999, 111, 9924. doi: 10.1063/1.480344
-
[21]
(21) Xu, C. X.; Xie, D. Q.; Zhang, D. H. Chin. J. Chem. Phys. 2006, 19, 96. doi: 10.1360/cjcp2006.19
-
[22]
(22) Yang, M. H.; Zhang, D. H.; Collins, M.; Lee, S. Y. J. Chem. Phys. 2001, 115, 174. doi: 10.1063/1.1372335
-
[23]
(23) Zhou, Y.; Fu, B. N.; Wang, C. R.; Collins, M.; Zhang, D. H. J. Chem. Phys. 2011, 134, 064323. doi: 10.1063/1.3552088
-
[24]
(24) Maisuradze, G.; Thompson, D. J. Phys. Chem. A 2003, 107, 7118. doi: 10.1021/jp030144a
-
[25]
(25) Maisuradze, G.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2003, 119, 10002. doi: 10.1063/1.1617271
-
[26]
(26) Guo, Y.; Kawano, A.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2004, 121, 5091. doi: 10.1063/1.1777572
-
[27]
(27) Maisuradze, G.; Kawano, A.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2004, 121, 10329. doi: 10.1063/1.1810477
-
[28]
(28) Kawano, A.; Maisuradze, G. J. Biol. Phys. Chem. 2006, 6, 37.
-
[29]
(29) Dawes, R.; Passalacqua, A.; Wagner, A.; Sewell, T.; Minkoff, M.; Thompson, D. J. Chem. Phys. 2009, 130, 144107. doi: 10.1063/1.3111261
-
[30]
(30) Sato, S. J. Chem. Phys. 1955, 23, 592. doi: 10.1063/1.1742043
-
[31]
(31) Boothroyd, A.; Keogh, W.; Martin, P.; Peterson, M. J. Chem. Phys. 1996, 104, 7139. doi: 10.1063/1.471430
-
[32]
(32) Bian, W. S.; Werner, H. J. J. Chem. Phys. 2000, 112, 220. doi: 10.1063/1.480574
-
[33]
(33) Capecchi, G.; Werner, H. J. Phys. Chem. Chem. Phys. 2004, 6, 4975. doi: 10.1039/b411385c
-
[34]
(34) Ayouz, M.; Babikov, D. J. Chem. Phys. 2013, 138, 164311. doi: 10.1063/1.4799915
-
[35]
(35) Li, J.; Wang, Y. M.; Jiang, B.; Ma, J. Y.; Dawes, R.; Xie, D. Q.; Bowman, J.; Guo, H. J. Chem. Phys. 2012, 136, 041103. doi: 10.1063/1.3680256
-
[36]
(36) Xie, Z.; Bowman, J.; Zhang, X. B. J. Chem. Phys. 2006, 125, 133120. doi: 10.1063/1.2238871
-
[37]
(37) Czakó, G.; Bowman, J. Phys. Chem. Chem. Phys. 2011, 13, 8306. doi: 10.1039/C0CP02456B
-
[38]
(38) Czakó, G.; Bowman, J. J. Chem. Phys. 2012, 136, 044307. doi: 10.1063/1.3679014
-
[39]
(39) Yang, J. Y.; Shao, K. J.; Zhang, D.; Shuai, Q.; Fu, B. N.; Zhang, D. H.; Yang, X. M. J. Phys. Chem. Lett. 2014, 5, 3106. doi: 10.1021/jz5016923
-
[40]
(40) Zhang, I. Y.; Wu, J.; Xu, X. Chem. Commun. 2010, 46, 3057. doi: 10.1039/C000677G
-
[41]
(41) Zhang, I. Y.; Xu, X. A New-Generation Density Functional Towards Chemical Accuracy for Chemistry of Main Group Elements; Heidelberg: Springer, 2014.
-
[42]
(42) Zhang, I. Y.; Xu, X. Int. Rev. Phys. Chem. 2011, 30, 115. doi: 10.1080/0144235X.2010.542618
-
[43]
(43) Zhang, I. Y.; Xu, X. Prog. Chem. 2012, 24, 1023.
-
[44]
(44) Su, N. Q.; Xu, X. Sci. China Chem. 2013, 43, 1761. doi: 10.1360/032013-258
-
[45]
(45) Su, N. Q.; Xu, X. Int. J. Quantum Chem. 2015, 115, 589. doi: 10.1002/qua.24849
-
[46]
(46) Chen, J.; Zhang, D. H. Sci. Sin. Chim. 2015, 45, 1241. doi: 10.1360/N032015-00148
-
[47]
(47) Su, N. Q.; Chen, J.; Sun, Z. G.; Zhang, D. H.; Xu, X. J. Chem. Phys. 2015, 142, 084107. doi: 10.1063/1.4913196
-
[48]
(48) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics. MBPT and Coupled-Cluster Theory; Cambridge University Press: Now York, 2009.
-
[49]
(49) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133
-
[50]
(50) Slater, J. C. Quamtum Theory of Molecules and Solids: v4; New York: McGraw-Hill Inc, 1974.
-
[51]
(51) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159
-
[52]
(52) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[53]
(53) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[54]
(54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[55]
(55) Gunnarsson, O.; Lundqvist, B. I. Phys. Rev. B 1976, 13, 4274. doi: 10.1103/PhysRevB.13.4274
-
[56]
(56) Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1977, 15, 2884. doi: 10.1103/PhysRevB.15.2884
-
[57]
(57) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304
-
[58]
(58) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[59]
(59) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
-
[60]
(60) Zhang, I. Y.; Xu, X.; Goddard, W., III. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4963. doi: 10.1073/pnas.0901093106
-
[61]
(61) Görling, A.; Levy, M. Phys. Rev. B 1993, 47, 13105. doi: 10.1103/PhysRevB.47.13105
-
[62]
(62) Görling, A.; Levy, M. Phys. Rev. A 1994, 50, 196. doi: 10.1103/PhysRevA.50.196
-
[63]
(63) Zhang, I. Y.; Xu, X.; Jung, Y. S.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 19896. doi: 10.1073/pnas.1115123108
-
[64]
(64) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205
-
[65]
(65) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182
-
[66]
(66) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[67]
(67) Cremer, D. Mol. Phys. 2001, 99, 1899. doi: 10.1080/00268970110083564
-
[68]
(68) Zhang, I. Y.; Su, N. Q.; Brémond, É. A. G.; Adamo, C. J. Chem. Phys. 2012, 136, 174103. doi: 10.1063/1.3703893
-
[69]
(69) Su, N. Q.; Xu, X. J. Chem. Phys. 2014, 140, 18A512. doi: 10.1063/1.4866457
-
[70]
(70) Su, N. Q.; Zhang, I. Y.; Xu, X. J. Comput. Chem. 2013, 34, 1759. doi: 10.1002/jcc.23312
-
[71]
(71) Su, N. Q.; Adamo, C.; Xu, X. J. Chem. Phys. 2013, 139, 174106. doi: 10.1063/1.4827024
-
[72]
(72) Zhang, I. Y.; Xu, X. J. Phys. Chem. Lett. 2013, 4, 1669. doi: 10.1021/jz400695u
-
[73]
(73) Zhang, I. Y.; Luo, Y.; Xu, X. J. Chem. Phys. 2010, 133, 104105. doi: 10.1063/1.3488649
-
[1]
-
-
-
[1]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[2]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[3]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[4]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[5]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[6]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[12]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[16]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[17]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[18]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[19]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[20]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(690)
- HTML views(66)