Citation: SU Neil-Qiang, CHEN Jun, XU Xin, ZHANG Dong-H. Quantum Reaction Dynamics Based on a New Generation Density Functional and Neural Network Potential Energy Surfaces[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 119-130. doi: 10.3866/PKU.WHXB201512011 shu

Quantum Reaction Dynamics Based on a New Generation Density Functional and Neural Network Potential Energy Surfaces

  • Corresponding author: XU Xin,  ZHANG Dong-H, 
  • Received Date: 30 September 2015
    Available Online: 30 November 2015

    Fund Project: 国家自然科学基金(91427301,91221301,21433009,21133004) (91427301,91221301,21433009,21133004)国家重点基础研究发展规划项目(973)(2013CB834601,2013CB834606) (973)(2013CB834601,2013CB834606)

  • Recent progresses on a new generation density functional XYG3 and the construction of potential energy surfaces using neural networks are reviewed in this article. Using H3 and CH5 systems as illustrative examples, it is concluded that highly reliable dynamics results can be obtained from the combination of electronic structure calculations based on efficient and accurate density functionals and accurate potential energy surfaces using neural networks. It holds promise for future applications in larger and more complicated systems.
  • 加载中
    1. [1]

      (1) Yang, X. M. Int. Rev. Phys. Chem. 2005, 24, 37. doi: 10.1080/01442350500163806

    2. [2]

      (2) Yang, X. M. Annu. Rev. Phys. Chem. 2007, 58, 433. doi: 10.1146/annurev.physchem.58.032806.104632

    3. [3]

      (3) Clary, D. C. Science 2008, 321, 789. doi: 10.1126/science.1157718

    4. [4]

      (4) Zhang, D. H.; Collins, M.; Lee, S. Science 2000, 290, 961. doi: 10.1126/science.290.5493.961

    5. [5]

      (5) Wu, T.; Werner, H. J.; Manthe, U. Science 2004, 306, 2227. doi: 10.1126/science.1104085

    6. [6]

      (6) Guo, H. Int. Rev. Phys. Chem. 2012, 31, 1. doi: 10.1080/0144235X.2011.649999

    7. [7]

      (7) Harich, S. A.; Dai, D. X.; Wang, C. C.; Yang, X. M.; Chao, S. D.; Skodje, R. T. Nature 2002, 419, 281. doi: 10.1038/nature01068

    8. [8]

      (8) Dai, D. X.; Wang, C. C.; Harich, S. A.; Wang, X. Y.; Yang, X. M.; Chao, S. D.; Skodje, R. T. Science 2003, 300, 1730. doi: 10.1126/science.1084041

    9. [9]

      (9) Qiu, M. H.; Ren, Z. F.; Che, L.; Dai, D. X.; Harich, S. A.; Wang, X. Y.; Yang, X. M.; Xu, C. X.; Xie, D. Q.; Gustafsson, M.; Skodje, R. T.; Sun, Z. G.; Zhang, D. H. Science 2006, 311, 1440. doi: 10.1126/science.1123452

    10. [10]

      (10) Che, L.; Ren, Z. F.; Wang, X. G.; Dong, W. R.; Dai, D. X.; Wang, X. Y.; Zhang, D. H.; Yang, X. M.; Sheng, L. S.; Li, G. L.; Werner, H. J.; Lique, F.; Alexander, M. H. Science 2007, 317, 1061. doi: 10.1126/science.1144984

    11. [11]

      (11) Wang, X. A.; Dong, W. R.; Xiao, C. L.; Che, L.; Ren, Z. F.; Dai, D. X.; Wang, X. Y.; Casavecchia, P.; Yang, X. M.; Jiang, B.; Xie, D. Q.; Sun, Z. G.; Lee, S. Y.; Zhang, D. H.; Werner, H. J.; Alexander, M. H. Science 2008, 322, 573. doi: 10.1126/science.1163195

    12. [12]

      (12) Dong, W. R.; Xiao, C. L.; Wang, T.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2010, 327, 1501. doi: 10.1126/science.1185694

    13. [13]

      (13) Xiao, C. L.; Xu, X.; Liu, S.; Wang, T.; Dong, W. R.; Yang, T. G.; Sun, Z. G.; Dai, D. X.; Xu, X.; Zhang, D. H.; Yang, X. M. Science 2011, 333, 440. doi: 10.1126/science.1205770

    14. [14]

      (14) Wang, T.; Chen, J.; Yang, T. G.; Xiao, C. L.; Sun, Z. G.; Huang, L.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2013, 342, 1499. doi: 10.1126/science.1246546

    15. [15]

      (15) Yang, T. G.; Chen, J.; Huang, L.; Wang, T.; Xiao, C. L.; Sun, Z. G.; Dai, D. X.; Yang, X. M.; Zhang, D. H. Science 2015, 347, 60. doi: 10.1126/science.1260527

    16. [16]

      (16) Chen, J.; Sun, Z. G.; Zhang, D. H. J. Chem. Phys. 2015, 142, 024303. doi: 10.1063/1.4904546

    17. [17]

      (17) Ischtwan, J.; Collins, M. J. Chem. Phys. 1994, 100, 8080. doi: 10.1063/1.466801

    18. [18]

      (18) Thompson, K. C.; Jordan, M.; Collins, M. J. Chem. Phys. 1998, 108, 564. doi: 10.1063/1.475419

    19. [19]

      (19) Bettens, R.; Collins, M. J. Chem. Phys. 1999, 111, 816. doi: 10.1063/1.479368

    20. [20]

      (20) Collins, M.; Zhang, D. H. J. Chem. Phys. 1999, 111, 9924. doi: 10.1063/1.480344

    21. [21]

      (21) Xu, C. X.; Xie, D. Q.; Zhang, D. H. Chin. J. Chem. Phys. 2006, 19, 96. doi: 10.1360/cjcp2006.19

    22. [22]

      (22) Yang, M. H.; Zhang, D. H.; Collins, M.; Lee, S. Y. J. Chem. Phys. 2001, 115, 174. doi: 10.1063/1.1372335

    23. [23]

      (23) Zhou, Y.; Fu, B. N.; Wang, C. R.; Collins, M.; Zhang, D. H. J. Chem. Phys. 2011, 134, 064323. doi: 10.1063/1.3552088

    24. [24]

      (24) Maisuradze, G.; Thompson, D. J. Phys. Chem. A 2003, 107, 7118. doi: 10.1021/jp030144a

    25. [25]

      (25) Maisuradze, G.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2003, 119, 10002. doi: 10.1063/1.1617271

    26. [26]

      (26) Guo, Y.; Kawano, A.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2004, 121, 5091. doi: 10.1063/1.1777572

    27. [27]

      (27) Maisuradze, G.; Kawano, A.; Thompson, D.; Wagner, A.; Minkoff, M. J. Chem. Phys. 2004, 121, 10329. doi: 10.1063/1.1810477

    28. [28]

      (28) Kawano, A.; Maisuradze, G. J. Biol. Phys. Chem. 2006, 6, 37.

    29. [29]

      (29) Dawes, R.; Passalacqua, A.; Wagner, A.; Sewell, T.; Minkoff, M.; Thompson, D. J. Chem. Phys. 2009, 130, 144107. doi: 10.1063/1.3111261

    30. [30]

      (30) Sato, S. J. Chem. Phys. 1955, 23, 592. doi: 10.1063/1.1742043

    31. [31]

      (31) Boothroyd, A.; Keogh, W.; Martin, P.; Peterson, M. J. Chem. Phys. 1996, 104, 7139. doi: 10.1063/1.471430

    32. [32]

      (32) Bian, W. S.; Werner, H. J. J. Chem. Phys. 2000, 112, 220. doi: 10.1063/1.480574

    33. [33]

      (33) Capecchi, G.; Werner, H. J. Phys. Chem. Chem. Phys. 2004, 6, 4975. doi: 10.1039/b411385c

    34. [34]

      (34) Ayouz, M.; Babikov, D. J. Chem. Phys. 2013, 138, 164311. doi: 10.1063/1.4799915

    35. [35]

      (35) Li, J.; Wang, Y. M.; Jiang, B.; Ma, J. Y.; Dawes, R.; Xie, D. Q.; Bowman, J.; Guo, H. J. Chem. Phys. 2012, 136, 041103. doi: 10.1063/1.3680256

    36. [36]

      (36) Xie, Z.; Bowman, J.; Zhang, X. B. J. Chem. Phys. 2006, 125, 133120. doi: 10.1063/1.2238871

    37. [37]

      (37) Czakó, G.; Bowman, J. Phys. Chem. Chem. Phys. 2011, 13, 8306. doi: 10.1039/C0CP02456B

    38. [38]

      (38) Czakó, G.; Bowman, J. J. Chem. Phys. 2012, 136, 044307. doi: 10.1063/1.3679014

    39. [39]

      (39) Yang, J. Y.; Shao, K. J.; Zhang, D.; Shuai, Q.; Fu, B. N.; Zhang, D. H.; Yang, X. M. J. Phys. Chem. Lett. 2014, 5, 3106. doi: 10.1021/jz5016923

    40. [40]

      (40) Zhang, I. Y.; Wu, J.; Xu, X. Chem. Commun. 2010, 46, 3057. doi: 10.1039/C000677G

    41. [41]

      (41) Zhang, I. Y.; Xu, X. A New-Generation Density Functional Towards Chemical Accuracy for Chemistry of Main Group Elements; Heidelberg: Springer, 2014.

    42. [42]

      (42) Zhang, I. Y.; Xu, X. Int. Rev. Phys. Chem. 2011, 30, 115. doi: 10.1080/0144235X.2010.542618

    43. [43]

      (43) Zhang, I. Y.; Xu, X. Prog. Chem. 2012, 24, 1023.

    44. [44]

      (44) Su, N. Q.; Xu, X. Sci. China Chem. 2013, 43, 1761. doi: 10.1360/032013-258

    45. [45]

      (45) Su, N. Q.; Xu, X. Int. J. Quantum Chem. 2015, 115, 589. doi: 10.1002/qua.24849

    46. [46]

      (46) Chen, J.; Zhang, D. H. Sci. Sin. Chim. 2015, 45, 1241. doi: 10.1360/N032015-00148

    47. [47]

      (47) Su, N. Q.; Chen, J.; Sun, Z. G.; Zhang, D. H.; Xu, X. J. Chem. Phys. 2015, 142, 084107. doi: 10.1063/1.4913196

    48. [48]

      (48) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics. MBPT and Coupled-Cluster Theory; Cambridge University Press: Now York, 2009.

    49. [49]

      (49) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133

    50. [50]

      (50) Slater, J. C. Quamtum Theory of Molecules and Solids: v4; New York: McGraw-Hill Inc, 1974.

    51. [51]

      (51) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159

    52. [52]

      (52) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    53. [53]

      (53) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    54. [54]

      (54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    55. [55]

      (55) Gunnarsson, O.; Lundqvist, B. I. Phys. Rev. B 1976, 13, 4274. doi: 10.1103/PhysRevB.13.4274

    56. [56]

      (56) Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1977, 15, 2884. doi: 10.1103/PhysRevB.15.2884

    57. [57]

      (57) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    58. [58]

      (58) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    59. [59]

      (59) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001

    60. [60]

      (60) Zhang, I. Y.; Xu, X.; Goddard, W., III. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4963. doi: 10.1073/pnas.0901093106

    61. [61]

      (61) Görling, A.; Levy, M. Phys. Rev. B 1993, 47, 13105. doi: 10.1103/PhysRevB.47.13105

    62. [62]

      (62) Görling, A.; Levy, M. Phys. Rev. A 1994, 50, 196. doi: 10.1103/PhysRevA.50.196

    63. [63]

      (63) Zhang, I. Y.; Xu, X.; Jung, Y. S.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 19896. doi: 10.1073/pnas.1115123108

    64. [64]

      (64) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205

    65. [65]

      (65) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182

    66. [66]

      (66) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336

    67. [67]

      (67) Cremer, D. Mol. Phys. 2001, 99, 1899. doi: 10.1080/00268970110083564

    68. [68]

      (68) Zhang, I. Y.; Su, N. Q.; Brémond, É. A. G.; Adamo, C. J. Chem. Phys. 2012, 136, 174103. doi: 10.1063/1.3703893

    69. [69]

      (69) Su, N. Q.; Xu, X. J. Chem. Phys. 2014, 140, 18A512. doi: 10.1063/1.4866457

    70. [70]

      (70) Su, N. Q.; Zhang, I. Y.; Xu, X. J. Comput. Chem. 2013, 34, 1759. doi: 10.1002/jcc.23312

    71. [71]

      (71) Su, N. Q.; Adamo, C.; Xu, X. J. Chem. Phys. 2013, 139, 174106. doi: 10.1063/1.4827024

    72. [72]

      (72) Zhang, I. Y.; Xu, X. J. Phys. Chem. Lett. 2013, 4, 1669. doi: 10.1021/jz400695u

    73. [73]

      (73) Zhang, I. Y.; Luo, Y.; Xu, X. J. Chem. Phys. 2010, 133, 104105. doi: 10.1063/1.3488649

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

Metrics
  • PDF Downloads(2)
  • Abstract views(501)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return