Citation: WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 728-736. doi: 10.3866/PKU.WHXB201511303
-
A novel Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst was prepared by hydrothermal posttreatment using dicyandiamide, zinc acetate, ammonium molybdate, cadmium acetate, and sodium sulfide as raw materials. X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), inductively coupled plasma atomic emission (ICP-AES), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The results indicate that heterojunctions are formed across the g-C3N4/Zn-Mo-CdS interface, which promotes interfacial charge transfer and inhibits the recombination of electrons and holes. The activities of as-prepared catalysts were tested through the photocatalytic degradation of Rhodamine B (RhB) under visible light. The results show that the Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst clearly displayed increased activity compared with single g-C3N4 and Zn-Mo-CdS. At an optimal g-C3N4 mass fraction of 20%, the as-prepared heterojunction photocatalyst displayed the highest rate constant under visible light, which was 30 and 10 times of single g-C3N4 and Zn-Mo-CdS, respectively. Not only Zn-Mo-CdS, but also Mo-Ni-CdS and Ni-Sn-CdS can form heterojunctions with g-C3N4 to promote the rate of separation of electrons and holes and improve photocatalytic activity.
-
-
[1]
(1) Kondo, K.; Murakami, N.; Ye, C.; Tsubota, T.; Ohno, T. Appl. Catal. B: Environ. 2013, 142-143, 362.
-
[2]
(2) Chen, X. B.; Shen, S. H.; Guo, L. J. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
-
[3]
(3) Zhang, G. G.; Zhang, M.W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611
-
[4]
(4) Xu, J.; Wu, H. T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. Phys. Chem. Chem. Phys. 2013, 15, 4510. doi: 10.1039/c3cp44402c
-
[5]
(5) Ge, L. Mater. Lett. 2011, 65, 2652. doi: 10.1016/j.matlet.2011.05.069
-
[6]
(6) Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22
-
[7]
(7) Zhang, Q.; Wang, H. Y.; Hu, S. Z.; Lu, G.; Bai, J.; Kang, X.X.; Liu, D.; Gui, J. Z. RSC Adv. 2015, 5, 42736. doi: 10.1039/C5RA04189A
-
[8]
(8) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Chem. Commun.2015, 51, 858. doi: 10.1039/C4CC08996K
-
[9]
(9) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A.R. Nano Energy 2015, 13, 757. doi: 10.1016/j.nanoen.2015.03.014
-
[10]
(10) Tian, N.; Huang, H.W.; He, Y.; Guo, Y. X.; Zhang, Y. H. RSC Adv. 2014, 4, 42716. doi: 10.1039/C4RA05917D
-
[11]
(11) He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. RSC Adv. 2014, 4, 13610. doi: 10.1039/c4ra00693c
-
[12]
(12) Wang, Y. J.; Bai, X. J.; Pan, C. S.; He, J.; Zhu, Y. F. J. Mater. Chem. 2012, 22, 11568. doi: 10.1039/c2jm16873a
-
[13]
(13) Hu, J. S.; Ren, L. L.; Guo, Y. G.; Liang, H. P.; Cao, A. M.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2012, 44, 1269.
-
[14]
(14) Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
-
[15]
(15) Huo, Y. N.; Yang, X. L.; Zhu, J.; Li, H. X. Appl. Catal. B: Environ. 2011, 106, 69.
-
[16]
(16) Fan, Y. H.; Luo, Q.; Liu, G. X.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Sun, D. Chin. J. Inorg. Chem. 2014, 30, 627. [范英华, 雒琴, 刘桂霞, 王进贤, 董相廷, 于文生, 孙德. 无机化学学报, 2014, 30, 627.]
-
[17]
(17) Nie, Q. L.; Yuan, Q. L.; Wang, Q. S.; Xu, Z. D. J. Mater. Sci.2004, 39, 5611. doi: 10.1023/B: JMSC.0000039301.70811.a4
-
[18]
(18) Xia, S.; Lei, W.; Yang, Y. L. Nanoscale Res. Lett. 2011, 6, 562. doi: 10.1186/1556-276X-6-562
-
[19]
(19) Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543. doi: 10.2138/am-2000-0416
-
[20]
(20) Ge, L.; Han, C.; Xiao, X. Int. J. Hydrog. Energy 2013, 38, 6960. doi: 10.1016/j.ijhydene.2013.04.006
-
[21]
(21) Sun, M.; Yan, T.; Yan, Q; Liu, H. Y.; Yan, L. G.; Zhang, Y. F.; Du, B. RSC Adv. 2014, 4, 19980. doi: 10.1039/c4ra01439a
-
[22]
(22) Sun, M.; Yan, Q.; Yan, T.; Li, M. M.; Wei, D.; Wang, Z. P.; Wei, Q.; Du, B. RSC Adv. 2014, 4, 31019. doi: 10.1039/C4RA03843F
-
[23]
(23) Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n
-
[24]
(24) Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
-
[25]
(25) Shen, L. J.; Luo, M. B.; Liu, Y. H.; Liang, R.W.; Jing, F. F.; Wu, L. Appl. Catal. B: Environ. 2015, 166-167, 445.
-
[26]
(26) Chen, F. J.; Cao, Y. L.; Jia, D. Z.; Liu, A. J. Dyes Pigments2015, 120, 8. doi: 10.1016/j.dyepig.2015.03.030
-
[27]
(27) Chen, F. J.; Cao, Y. L.; Jia, D. Z. Ceram. Int. 2015, 41, 6645. doi: 10.1016/j.ceramint.2015.01.111
-
[28]
(28) Hu, S. Z.; Li, F. Y.; Fan, Z. P.; Wang, F.; Zhao, Y. F.; Lv, Z. B. Dalton Trans. 2015, 44, 1084. doi: 10.1039/C4DT02658F
-
[29]
(29) Wang, D. S.; Duan, Y. D.; Luo, Q. Z.; Li, X. Y.; Bao, L. L.Desalination 2011, 270, 174. doi: 10.1016/j.desal.2010.11.042
-
[30]
(30) Lu, M. L.; Pei, Z. X.; Weng, S. X.; Feng, W. H.; Fang, Z. B.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys.2014, 16, 21280. doi: 10.1039/C4CP02846E
-
[31]
(31) Liu, L. Y.; Yang, L.; Pu, Y. T.; Xiao, D. Q.; Zhu, J. G. Mater. Lett. 2012, 66, 121. doi: 10.1016/j.matlet.2011.08.025
-
[32]
(32) Ge, L.; Han, C. C.; Liu, J. Appl. Catal. B: Environ. 2011, 108-109, 100.
-
[33]
(33) Liu, H.; Jin, Z. T.; Xu, Z. Z. Dalton Trans. 2015, 44, 14368. doi: 10.1039/C5DT01364J
-
[34]
(34) Dong, F.; Zhao, Z.W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. ACS Appl. Mater. Interf. 2013, 5, 11392. doi: 10.1021/am403653a
-
[35]
(35) Cao, J.; Luo, B. D.; Lin. H. L.; Xu, B. Y.; Chen, S. F.J. Hazard. Mater. 2012, 217-218, 107.
-
[36]
(36) Wang, Y.; Wang, X. C.; Antonietti, M. Angew. Chem. Int. Edit.2012, 51, 68. doi: 10.1002/anie.201101182
-
[37]
(37) Ge, L.; Han, C. Appl. Catal. B: Environ. 2012, 117-118, 268.
-
[38]
(38) Ma, D. K.; Zhou, H. Y.; Zhang, J. H.; Qian, Y. T. Mater. Chem. Phys. 2008, 111, 391. doi: 10.1016/j.matchemphys.2008.04.035
-
[39]
(39) Zhu, Y. P.; Li, J.; Ma, T. Y.; Liu, Y. P.; Du, G. H.; Yuan, Z. Y.J. Mater. Chem. A 2014, 2, 1093. doi: 10.1039/C3TA13636A
-
[40]
(40) Zhang, K.; Kim, W. J.; Ma, M.; Shi, X. J.; Park, J. H. J. Mater. Chem. A 2015, 3, 4803. doi: 10.1039/C4TA05571C
-
[41]
(41) Li, Y. G.; Wei, X. L.; Li, H. J.; Wang, R. R.; Feng, J.; Yun, H.; Zhou, A. N. RSC Adv. 2015, 5, 14074 doi: 10.1039/C4RA14690E
-
[42]
(42) Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G. Dalton Trans. 2013, 42, 7604. doi: 10.1039/c3dt32871f
-
[43]
(43) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9, 425. doi: 10.1016/j.elecom.2006.10.008
-
[44]
(44) Zhang, J.; Wang, Y. J.; Hu, S. Z. Acta Phys. -Chim. Sin. 2015, 31, 159. [张健, 王彥娟, 胡绍争. 物理化学学报, 2015, 31, 159.] doi: 10.3866/PKU.WHXB201411201
-
[1]
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[5]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[6]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[13]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[14]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[15]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[17]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(314)
- HTML views(11)