Citation: YE Qing, HU Ren, ZHOU Jian-Zhang, YE Yi-Wen, XU Zhao-Xi, LIN Chang-Jian, LIN Zhong-Yu. FTIR-ATR Spectrometry of BSA Adsorption on Hydroxyapatite[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 565-572. doi: 10.3866/PKU.WHXB201511301 shu

FTIR-ATR Spectrometry of BSA Adsorption on Hydroxyapatite

  • Corresponding author: LIN Zhong-Yu, 
  • Received Date: 2 July 2015
    Available Online: 26 November 2015

    Fund Project: 国家自然科学基金(51571169)资助项目 (51571169)

  • The microcosmic process of bovine serum albumin (BSA) adsorbing onto hydroxyapatite (HA) for different time intervals was investigated by Fourier transform infrared attenuated total internal reflectance (FTIRATR) spectrometry. The initial dissolution and re-precipitation of PO43-, Ca2+, and OH- ions from the HA coating led to the occurrence of the coating including adsorbed BSA on the HA from surface-to subsurface-molecular layers and to in-depth interaction between BSA and HA. The subtraction results gained in the adsorption regions of HA and BSA reveal that the binding of P=O, from the phosphate (PO43-), to the hydrogen of amide II, methyl and methene of the BSA appears to be considerably more rapid and stronger than that of the P―O group. In addition, it is very likely that Ca2+ plays an important role in the interaction of BSA with HA. It appears that the binding of Ca2+ to the carbonyl-oxygen of the peptide bond in BSAcaused a significant, molecular, conformational rearrangement of polypeptide backbones from β-pleated sheet to helical circles of α-helix and β-turn. This change appears to have been followed by much hydrogen of polypeptides being driven to bind PO43- and OHeffectively and much ―C=O and H―N―groups of the peptide bond being freed from inter-chain hydrogenbonding to act on Ca2+ and combine strongly with the HA surface. This might reasonably be expected to promote hard tissue regeneration. BSA seems to be activated by the inductive effect of Ca2+ via the molecular rearrangement of polypeptide backbones from pleated sheet to helical circles and in turn reacts strongly on the HA, resulting in profound effects on the course of biomineralization.
  • 加载中
    1. [1]

      (1) Moulton, S. E.; Barisci, J. N.; McQuillan, A. J.; Wallace, G. G.Colloid. Surf. A: Physicochem. Eng. Asp. 2003, 220, 159. doi: 10.1016/S0927-7757(03)00078-5

    2. [2]

      (2) Lenk, T. J.; Ratner, B. D.; Gendreau, R. M.; Chittur, K. K.J. Biomed. Mater. Res. 1989, 23, 549.

    3. [3]

      (3) Shen, Y. H.; Yang, Z. L.; Wu, J. G. Acta Phys. -Chim. Sin. 1999, 15 (12), 1064. [沈玉华, 杨展澜, 吴瑾光. 物理化学学报, 1999, 15 (12), 1064.] doi: 10.3866/PKU.WHXB19991203

    4. [4]

      (4) Shen, Y. H.; Yang, Z. L.; Wu, J. G. 1999, 35 (4), 431. [沈玉华, 杨展澜, 吴瑾光. 北京大学学报(自然科学版), 1999, 35 (4), 431.]

    5. [5]

      (5) Elangovan, S.; Margolis, H. C.; Oppenheim, F. G.; Beniash, E.Langmuir 2007, 23 (22), 11200. doi: 10.1021/la7013978

    6. [6]

      (6) Ong, J. L.; Chittur, K. K.; Lucas, L. C. J. Biomed. Mater. Res. 1994, 28, 1337.

    7. [7]

      (7) Yang, Q.; Zhang, Y. Y.; Liu, M. L.; Ye, M.; Zhang, Y. Q.; Yao, S. Z. Analytica Chimica Acta 2007, 597, 58. doi: 10.1016/j.aca.2007.06.025

    8. [8]

      (8) Zeng, H. T.; Chittur, K. K.; Lacefield, W. R. Biomaterials 1999, 20, 377. doi: 10.1016/S0142-9612(98)00184-7

    9. [9]

      (9) Feng, B.; Chen, J. Y.; Zhang, X. D. Biomaterials 2002, 23(12), 2499. doi: 10.1016/S0142-9612(01)00384-2

    10. [10]

      (10) Ye, Q.; Hu, R.; Lin, Z. Y.; Lin, C. J. Chem. J. Chin. Univ. 2006, 27 (8), 1552. [叶青, 胡仁, 林种玉, 林昌健. 高等学校化学学报, 2006, 27 (8), 1552.]

    11. [11]

      (11) Yan, Y. L.; Jin, Z. C. Applications of Fourier TransformInfrared Spectrometry in Researches of Agriculture, Food andBiology. In Modern Fourier-Transform Infrared Spectrometry and Its Applications (Part II); 1st ed.; Wu, J. G. Ed.; Literatureof Science and Technology Press: Beijing, 1994; pp 177-180.[严衍禄, 金泽宸. 傅里叶变换光谱在农业、食品和生物学研究中的应用; 近代傅里叶变换红外光谱技术及应用(下卷).吴瑾光主编. 北京: 科学技术文献出版社, 1994: 177-180.]

    12. [12]

      (12) Maruyama, T.; Katoh, S.; Nakajima, M.; Nabetani, H.; Abbott, T. P.; Shono, A.; Satoh, K. J. Membr. Sci. 2001, 192, 201. doi: 10.1016/S0376-7388(01)00502-6

    13. [13]

      (13) Bellamy, L. J. The Infra-red Spectra of Complex Molecules, 3rd ed.; Chapman and Hall: London, 1975; pp 14-26, 107-125, 183-202, 386.

    14. [14]

      (14) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Infraredspectrometry. In Spectrometric Identification of Organic Compounds, 5th ed.; Sawicki, D., Stiefel, J. Eds.; Wiley: NewYork, 1991; pp 103, 123.

    15. [15]

      (15) Rao, C. N. R. Chemical applications of Infrared Spectroscopy.1st ed.; Academic Press Inc.: New York, 1963; pp 131-138, 255-262, 480-495.

    16. [16]

      (16) Driessens, F. C. M.; van Dijk, J.W. E.; Borggreven, J. M. P. M.Calcif. Tissue Res. 1978, 26, 127. doi: 10.1007/BF02013247

    17. [17]

      (17) Clark, G. C. F.; Williams, D. F. J. Biomed. Mater. Res. 1982, 16 (2), 125.

    18. [18]

      (18) Ong, J. L.; Lucas, L. C. Biomaterials. 1998, 19 (4-5), 455. doi: 10.1016/S0142-9612(97)00224-X

    19. [19]

      (19) Margolis, H. C.; Moreno, E. C. Calcif. Tissue Int. 1992, 50 (2), 137. doi: 10.1007/BF00298791

    20. [20]

      (20) Chittur, K. K. Biomaterials 1998, 19 (4-5), 357. doi: 10.1016/S0142-9612(97)00223-8

    21. [21]

      (21) Zhou, J. M.; Shi, N. Applications of Fourier TransformInfrared Spectrometry in Biochemistry. In Modern Fouriertransform Infrared Spectrometry and Its Applications (Part II), 1st ed.; Wu, J. G. Ed.; Literature of Science and TechnologyPress: Beijing, 1994; pp 193-212. [周筠梅, 施鼐. 傅里叶变换红外光谱在生物化学中的应用; 近代傅里叶变换红外光谱技术及应用(下卷). 吴瑾光主编. 北京: 科学技术文献出版社, 1994: 193-212.]

    22. [22]

      (22) Alvarez, J.; Haris, P. I.; Lee, D. C.; Chapman, D. Biochimica Et Biophysica Acta 1987, 916 (1), 5. doi: 10.1016/0167-4838(87)90204-4

    23. [23]

      (23) Xu, C. F. Proteins. In Biochemistry (Book One), 2nd ed.; Shen, T.; Wang, J. Y. Eds.; Higher Education Press: Beijing, 1990; pp 146-150. [徐长法. 生物化学(上册). 沈同, 王镜岩主编. 北京: 高等教育出版社, 1990: 146-150.]

    24. [24]

      (24) Hauschka, P. V. Haemostasis 1986, 16 (3-4), 258.

    25. [25]

      (25) Prestrelski, S. J.; Byler, D. M.; Thompson, M. P. Biochemistry 1991, 30 (36), 8797. doi: 10.1021/bi00100a010

    26. [26]

      (26) Fronticelli, C.; Bucci, E.; Shamoo, A. E. Biophys. Chem. 1984, 19 (3), 255. doi: 10.1016/0301-4622(84)87007-6

    27. [27]

      (27) Inesi, G. Annu. Rev. Physiol. 1985, 47, 573. doi: 10.1146/annurev.ph.47.030185.003041

    28. [28]

      (28) Wu, G. R.; Gao, Z. Y.; Dong, A. C.; Yu, S. N. Int. J. Biol. Macromol. 2012, 50 (4), 1011.

    29. [29]

      (29) Zhao, Y.W.; Yang, H. Y.; Meng, K. J.; Yu, S. N. Int. J. Biol. Macromol. 2014, 64, 453. doi: 10.1016/j.ijbiomac.2013.12.036

    30. [30]

      (30) Yu, M. M. Hormones. In Biochemistry (Book One), 2nd ed.; Shen, T., Wang, J. Y. Eds.; Higher Education Press: Beijing, 1990; pp 447-455. [俞梅敏. 生物化学(上册). 沈同, 王镜岩主编. 北京: 高等教育出版社, 1990: 447-455.]

    31. [31]

      (31) Morrissey, B.W.; Stromberg, R. R. J. Colloid. Interface Sci. 1974, 46 (1), 152. doi: 10.1016/0021-9797(74)90036-8

    32. [32]

      (32) Lin, Z. Y.; Xue, R.; Ye, Y.W.; Zheng, J. H.; Xu, Z. L. BMC Biotechnol. 2009, 9, 62. doi: 10.1186/1472-6750-9-62

    33. [33]

      (33) Lin, Z. Y.; Ye, Y.W.; Li, Q. L.; Xu, Z. L.; Wang, M. BMC Biotechnol. 2011, 11, 98. doi: 10.1186/1472-6750-11-98

    34. [34]

      (34) Zhou, W. J.; Wang, Y. Applications of Infrared Spectrometry inBasic Researches of Inorganic and Coordination Chemistry. InModern Fourier-transform Infrared Spectrometry and Its Applications (Part II), 1st ed.; Wu, J. G. Ed.; Literature ofScience and Technology Press: Beijing, 1994; pp 292-296. [周维金, 王毅. 红外光谱法在无机和配位化学基础研究中的应用; 近代傅里叶变换红外光谱技术及应用(下卷). 吴瑾光主编. 北京:科学技术文献版社, 1994: 292-296.]

    35. [35]

      (35) Barth, A. Prog. Biophys. Mol. Biol. 2000, 74 (3-5), 141. doi: 10.1016/S0079-6107(00)00021-3

    36. [36]

      (36) Farkas, V.; Vass, E.; Hanssens, I.; Majer, Z.; Hollosi, M.Bioorg. Med. Chem. 2005, 13 (17), 5310. doi: 10.1016/j.bmc.2005.06.040

    37. [37]

      (37) Rahmelow, K.; Hü bner, W.; Ackermann, T. Anal. Biochem. 1998, 257 (1), 1. doi: 10.1006/abio.1997.2502

    38. [38]

      (38) Shai, Y. Biochim. Biophys. Acta-Biomembr. 2013, 1828 (10), 2306.

    39. [39]

      (39) Kay, M. I.; Young, R. A.; Posner, A. S. Nature 1964, 204, 1050. doi: 10.1038/2041050a0

    40. [40]

      (40) Hauschka, P. V.; Carr, S. A. Biochemistry 1982, 21 (10), 2538. doi: 10.1021/bi00539a038

    41. [41]

      (41) Hauschka, P. V. Osteocalcin and Its Functional Domains. InThe Chemistry and Biology of Mineralized Tissues; Butler, W.T. Ed.; EBSCO Media: Birmingham, 1985; pp 149-158.

    42. [42]

      (42) Horbett, T. A. Protein Adsorption on Biomaterials. InBiomaterials: Interface Phenomena and Applications; Cooper, S. L., Peppas, N. A. Eds.; American Chemical Society:Washington DC, 1982; pp 233-244.

    43. [43]

      (43) Davies, J. E. The importance and Measurement of SurfaceCharge Species in Cell Behavior at the Biomaterial Interface.In Surface Characterization of Biomaterials; Ratner, B. D.Ed.; Elsevier: Amsterdam, 1988; pp 219-222.

    44. [44]

      (44) Ono, I.; Gunji, H.; Kaneko, F.; Saito, T.; Kuboki, Y.J. Craniofac. Surg. 1995, 6 (3), 238. doi: 10.1097/00001665-199505000-00011

    45. [45]

      (45) El-Ghannam, A.; Ducheyne, P.; Shapiro, I. M. Trans 21st Annual Meeting of Society for Biomaterials 1995, 46.

    46. [46]

      (46) Gungormus, M.; Fong, H.; Kim, I.W.; Evans, J. S.; Tamerler, C.; Sarikaya, M. Biomacromolecules 2008, 9 (3), 966. doi: 10.1021/bm701037x

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return