Citation: GU Gao-Chen, LI Na, ZHANG Xue, HOU Shi-Min, WANG Yong-Feng, WU Kai. Sierpiński Triangle Fractal Structures Investigated by STM[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 195-200. doi: 10.3866/PKU.WHXB201511261 shu

Sierpiński Triangle Fractal Structures Investigated by STM

  • Corresponding author: HOU Shi-Min,  WANG Yong-Feng,  WU Kai, 
  • Received Date: 27 October 2015
    Available Online: 26 November 2015

    Fund Project: 国家自然科学基金(21522301,21373020,21403008,61321001,21433011,21133001,913000002) (21522301,21373020,21403008,61321001,21433011,21133001,913000002)国家重点基础研究发展规划项目(973)(2014CB239302,2013CB933404,2011CB808702) (973)(2014CB239302,2013CB933404,2011CB808702)高等学校博士学科点专项科研基金(20130001110029)资助 (20130001110029)

  • Self-similar fractals have been extensively investigated because of their importance in mathematics and aesthetics. Chemists have attempted to synthesize various molecular fractal structures through sophisticated design. But because of poor solubility, synthesis of defect-free fractals with large sizes in solution usually proves difficult. Recently, we reported the formation of extended and defect-free Sierpiński triangle fractals by halogen or coordination bonds on surfaces under ultrahigh vacuum conditions. Their growth mechanism has been systematically studied by scanning tunneling microscopy. Using 4,4"'-dibromo- 1,1':3',1":4",1"'-quaterphenyl molecules, a series of Sierpiński triangles were successfully prepared on Ag(111) through self-assembly. A slow cooling rate is crucial for growing fractals of higher order. These fractals are only observed below liquid-nitrogen temperature because of the weak interactions in halogen bonds. More stable metal-organic Sierpiński triangles were fabricated by depositing 4,4″-dicyano-1,1':3',1″-terphenyl molecules and Fe atoms on Au(111) and annealing at around 100 °C for 10 min. The fractals are stabilized through coordination interaction between Fe atoms and N atoms in molecules. Density functional theory calculations revealed their imaging mechanism. Monte Carlo simulations displayed the formation process of surface-supported fractal structures. Three-fold nodes are believed to dominate the structure formation of Sierpiński triangles.
  • 加载中
    1. [1]

      (1) Mandelbrot, B. B. The Fractal Geometry of Nature; Freeman, W. H. Company: New York, 1982; pp 1–495.

    2. [2]

      (2) Newkome, G. R.; Shreiner, C. Chem. Rev. 2010, 110, 6338. doi: 10.1021/cr900341m

    3. [3]

      (3) Sugiura, K. I.; Tanaka, H.; Matsumoto, T.; Kawai, T.; Sakata, Y. Chem. Lett. 1999, 28, 1193.

    4. [4]

      (4) Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.; Mohapatra, P. P.; Li, S.; Hwang, S. H.; Lukoyanova, O.; Echegoyen, L.; Palagallo, J. A.; lancu, V.; Hla, S. W. Science 2006, 312, 1782. doi: 10.1126/science.1125894

    5. [5]

      (5) Fujibayashi, K.; Hariadi, R.; Park, S. H.; Winfree, E.; Murata, S. Nano Lett. 2008, 8, 1791. doi: 10.1021/nl0722830

    6. [6]

      (6) Sarkar, R.; Guo, K.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Angew. Chem. Int. Edit. 2014, 53, 12182 doi: 10.1002/anie.201407285

    7. [7]

      (7) Wang, M.; Wang, C.; Hao, X. Q.; Liu, J.; Li, X.; Xu, C.; Lopez, A.; Sun, L.; Song, M. P.; Yang, H. B.; Li, X. J. Am. Chem. Soc. 2014, 136, 6664. doi: 10.1021/ja501417g

    8. [8]

      (8) Wang, A.; Zhao, M. Phys. Chem. Chem. Phys. 2015, 17, 21837. doi: 10.1039/C5CP03060A

    9. [9]

      (9) van Veen, E.; Tomadin, A.; Katsnelson, M. I. ; Yuan, S.; Polini, M. arXiv: 1504.00628.

    10. [10]

      (10) Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Nat. Chem. 2015, 7, 389. doi: 10.1038/nchem.2211

    11. [11]

      (11) Li, N.; Zhang, X.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Lü, J. T.; Tang, H.; Peng, L. M.; Hou, S. M.; Wu, K.; Wang, Y. F. Chin. Chem. Lett. 2015, 26, 1198. doi: 10.1016/j.cclet.2015.08.006

    12. [12]

      (12) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Guy Orpen, A.; Williams, I. D. Science 1999, 283, 1148. doi: 10.1126/science.283.5405.1148

    13. [13]

      (13) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248

    14. [14]

      (14) Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.

    15. [15]

      (15) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606. doi: 10.1126/science.1217544

    16. [16]

      (16) Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishina, R.; Long, J. R. Science 2013, 340, 960. doi: 10.1126/science.1234071

    17. [17]

      (17) Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. Nature 2013, 495, 461. doi: 10.1038/nature11990

    18. [18]

      (18) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444

    19. [19]

      (19) Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Chem. Soc. Rev. 2014, 43, 5896. doi: 10.1039/C4CS00067F

    20. [20]

      (20) Vargas, A.; Krivokapic, I.; Hauser, A.; Daku, L. M. L. Phys. Chem. Chem. Phys. 2013, 15, 3752.

    21. [21]

      (21) Nieckarz, D.; Szabelski, P. J. Phys. Chem. C 2013, 117, 11229.

    22. [22]

      (22) Nieckarz, D.; Szabelski, P. Chem. Commun. 2014, 50, 6843. doi: 10.1039/c4cc01344a

    23. [23]

      (23) Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappenberger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K. Angew. Chem. Int. Edit. 2007, 46, 710.

    24. [24]

      (24) Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Nano Lett. 2007, 7, 3813. doi: 10.1021/nl072466m

    25. [25]

      (25) Schlickum, U.; Klappenberger, F.; Decker, R.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Kern, K.; Brune, H.; Barth, J. V. J. Phys. Chem. C 2010, 114, 15602. doi: 10.1021/jp104518h

    26. [26]

      (26) Zhang, X.; Li, N.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Xie, C.; Shen, Z. Y.; Lü, J. T.; Tang, H.; Peng, L. M.; Hou, S. M.; Wu, K.; Wang, Y. F. ACS Nano 2015, doi: 10.1021/acsnano.5b04427

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Wanping Chen . Preliminary Exploration of the Chemistry Curriculum Content Selection for Science Education Major. University Chemistry, 2025, 40(3): 251-258. doi: 10.12461/PKU.DXHX202405065

    11. [11]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    12. [12]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    13. [13]

      CCS Chemistry | 国家自然科学基金委员会高飞雪&杨俊林:国家自然科学基金化学基础研究的资助策略、趋势与前沿. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405124): -.

    14. [14]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    18. [18]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(1)
  • Abstract views(641)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return