Citation: ZHAO Shu-Heng, LANG Lin, JIANG Jun-Fei, YIN Xiu-Li, WU Chuang-Zhi. Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 519-526. doi: 10.3866/PKU.WHXB201511243 shu

Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes

  • Corresponding author: LANG Lin, 
  • Received Date: 24 September 2015
    Available Online: 23 November 2015

    Fund Project: 国家自然科学基金(51202245,51106165) (51202245,51106165)广东省自然科学基金(S2013010014896,10251007006000000)资助项目 (S2013010014896,10251007006000000)

  • High-silica MFI zeolite membranes supported on porous α-alumina discs were prepared by a seeded secondary growth method, using tetrapropylammonium hydroxide (TPAOH) as organic template. First, nanocrystals were deposited on rough α-Al2O3 discs by a spin-on process. Then, based on controlling the H2O/Si molar ratio of the synthetic solution, a restricting in-plane h0h-oriented growth method with an ultra-dilute precursor was designed to prepare non-defective zeolite membranes that were as thin as possible. Finally, crosslinked and dense MFI zeolite membranes were prepared after the third synthesis step, giving a membrane layer thickness of about 8 μm, including ~5 μm dense layers and ~3 μm intermediate layers. Anovel, two-step method, coupling by low-temperature hydrocracking and oxidation, is proposed for efficient removal of the template from zeolite membranes. Compared with traditional high-temperature calcination, template removal by the two-step method could eliminate the grain boundary defects formed in response to stresses induced by heat treatment. As a result, the membranes treated by the two-step detemplation method displayed a preferable CO2/N2 separation factor (about 5.2) and high CO2 permeance (5.8 × 10-7 mol·m-2·s-11·Pa-1) at 30 ℃.
  • 加载中
    1. [1]

      (1) Caro, J.; Noack, M. Microporous Mesoporous Mat. 2008, 115, 215. doi: 10.1016/j.micromeso.2008.03.008

    2. [2]

      (2) Yu, M.; Noble, R. D.; Falconer, J. L. Accounts Chem. Res.2011, 44, 1196. doi: 10.1021/ar200083e

    3. [3]

      (3) Pina, M. P.; Mallada, R.; Arruebo, M.; Urbiztondo, M.; Navascues, N.; de la Iglesia, O.; Santamaria, J. Microporous Mesoporous Mat. 2011, 144, 19. doi: 10.1016/j.micromeso.2010.12.003

    4. [4]

      (4) Tsapatsis, M. Science 2011, 334, 767. doi: 10.1126/science.1205957

    5. [5]

      (5) Jiang, H. Y.; Zhang, B. Q.; Lin, Y. S.; Li, Y. D. Chin. Sci. Bull.2004, 49, 2133. [蒋海洋, 张宝泉, 林跃生, 李永丹. 科学通报, 2004, 49, 2133.] doi: 10.1007/BF03185778

    6. [6]

      (6) Guo, Y. L.; Deng, Z. Y.; Lu, G. Z. Petrochem. Technol. 2008, 37, 865. [郭杨龙, 邓志勇, 卢冠忠. 石油化工, 2008, 37, 865.]

    7. [7]

      (7) Cheng, Y.; Li, J. S.; Liu, M.; Sun, X. Y.; Wang, L. J. China Ceram. Ind. 2004, 11(1), 40. [成岳, 李健生, 刘媚, 孙秀云, 王连军. 中国陶瓷工业, 2004, 11(1), 40.]

    8. [8]

      (8) Snyder, M. A.; Tsapatsis, M. Angew. Chem. Int. Edit. 2007, 46, 7560.

    9. [9]

      (9) Cheng, Y.; Li, J. S.; Wang, L. J.; Sun, X. Y. Prog. Chem. 2006, 18, 221. [成岳, 李健生, 王连军, 孙秀云. 化学进展, 2006, 18, 221.]

    10. [10]

      (10) Peng, Y.; Wang, Z. B. Prog. Chem. 2012, 23, 2178. [彭勇, 王正宝. 化学进展, 2013, 23, 2178.]

    11. [11]

      (11) Lang, L.; Zhang, C.; Yin, X. L.; Wu, C. Z. Prog. Chem. 2011, 23, 1022. [郎林, 张超, 阴秀丽, 吴创之. 化学进展, 2011, 23, 1022.]

    12. [12]

      (12) Hedlund, J.; Sterte, J.; Anthonis, M.; Bons, A. J.; Carstensen, B.; Corcoran, N.; Cox, D.; Deckman, H.; De Gijnst, W.; deMoor, P. P.; Lai, F.; McHenry, J.; Mortier, W.; Reinoso, J.Microporous Mesoporous Mat. 2002, 52, 179. doi: 10.1016/S1387-1811(02)00316-5

    13. [13]

      (13) Sandströ m, L.; Sjö berg, E.; Hedlund, J. J. Membr. Sci. 2011, 380, 232. doi: 10.1016/j.memsci.2011.07.011

    14. [14]

      (14) Zhou, H.; Korelskiy, D.; Sjö berg, E.; Hedlund, J. Microporous Mesoporous Mat. 2014, 192, 76. doi: 10.1016/j.micromeso.2013.09.017

    15. [15]

      (15) Wang, Z. X.; Yan, W. F.; Tian, D. Y.; Cao, X. J.; Yu, J. H.; Xu, R. R. Acta Phys. -Chim. Sin. 2010, 26, 2044. [王周翔, 闫文付, 田大勇, 曹学静, 于吉红, 徐如人. 物理化学学报, 2010, 26, 2044.] doi: 10.3866/PKU.WHXB20100714

    16. [16]

      (16) Zhang, C.; Yan, W. F.; Yu, J. H.; Xu, R. R. Chem. J. Chin. Univ. 2012, 33, 1124. [张聪, 闫文付, 于吉红, 徐如人. 高等学校化学学报, 2012, 33, 1124.]

    17. [17]

      (17) Zhou, M.; Zhang, B. Q.; Liu, X. F. Chin. J. Inorg. Chem. 2006, 22, 1750. [周明, 张宝泉, 刘秀凤. 无机化学学报, 2006, 22, 1750.]

    18. [18]

      (18) Chen, H. L.; Li, Y. S.; Zhu, G. Q.; Yang, W. S. Sci. China Ser. B: Chem. 2008, 38, 777. [陈红亮, 李砚硕, 朱广奇, 杨维慎. 中国科学(B 辑: 化学), 2008, 38, 777.]

    19. [19]

      (19) Kanezashi, M.; Lin, Y. S. J. Phys. Chem. C 2009, 113, 3767. doi: 10.1021/jp804586q

    20. [20]

      (20) Tawalbeh, M.; Tezel, F. H.; Kruczek, B.; Letaief, S.; Detellier, C. J. Porous Mater. 2013, 20, 1407. doi: 10.1007/s10934-013-9726-y

    21. [21]

      (21) Kosinov, N.; Auffret, C.; Sripathi, V. G. P.; Gü cü yener, C.; Gascon, J.; Kapteijn, F.; Hensen, E. J. M. Microporous Mesoporous Mat. 2014, 197, 268. doi: 10.1016/j.micromeso.2014.06.022

    22. [22]

      (22) Lai, R.; Yan, Y. S.; Gavalas, G. R. Microporous Mesoporous Mat. 2000, 37, 9. doi: 10.1016/S1387-1811(99)00188-2

    23. [23]

      (23) Chen, H. L.; Li, Y. S.; Yang, W. S. J. Membr. Sci. 2007, 296, 122. doi: 10.1016/j.memsci.2007.03.021

    24. [24]

      (24) Tuan, V. A.; Noble, R. D.; Falconer, J. L. Aiche J. 2000, 46, 1201.

    25. [25]

      (25) Wey, M. Y.; Tseng, H. H.; Chiang, C. K. J. Membr. Sci. 2013, 446, 220. doi: 10.1016/j.memsci.2013.06.051

    26. [26]

      (26) Wang, Z. B.; Yan, Y. S. Microporous Mesoporous Mat. 2001, 48, 229. doi: 10.1016/S1387-1811(01)00357-2

    27. [27]

      (27) Lee, J. S.; Lee, Y. J.; Tae, E. L.; Park, Y. S.; Yoon, K. B.Science 2003, 301, 818. doi: 10.1126/science.1086441

    28. [28]

      (28) Wang, H. B.; Dong, X. L.; Lin, Y. S. J. Membr. Sci. 2014, 450, 425. doi: 10.1016/j.memsci.2013.08.030

    29. [29]

      (29) Kim, E.; Choi, J.; Tsapatsis, M. Microporous Mesoporous Mat.2013, 170, 1. doi: 10.1016/j.micromeso.2012.11.023

    30. [30]

      (30) Kanezashi, M.; O'Brien, J.; Lin, Y. S. Microporous Mesoporous Mat. 2007, 103, 302 doi: 10.1016/j.micromeso.2007.02.019

    31. [31]

      (31) Lang, L.; Liu, X. F.; Zhang, B. Q. Appl. Surf. Sci. 2009, 255, 4886. doi: 10.1016/j.apsusc.2008.12.030

    32. [32]

      (32) Choi, J.; Jeong, H. K.; Snyder, M. A.; Stoeger, J. A.; Masel, R.I.; Tsapatsis, M. Science 2009, 325, 590. doi: 10.1126/science.1176095

    33. [33]

      (33) Dong, J. H.; Lin, Y. S.; Hu, M. Z. C.; Peascoe, R. A.; Payzant, E. A. Microporous Mesoporous Mat. 2000, 34, 241. doi: 10.1016/S1387-1811(99)00175-4

    34. [34]

      (34) Li, Q. H.; Amweg, M. L.; Yee, C. K.; Navrotsky, A.; Parikh, A.N. Microporous Mesoporous Mat. 2005, 87, 45. doi: 10.1016/j.micromeso.2005.07.048

    35. [35]

      (35) Motuzas, J.; Heng, S.; Lau, P. P. S. Z.; Yeung, K. L.; Beresnevicius, Z. J.; Julbe, A. Microporous Mesoporous Mat.2007, 99, 197. doi: 10.1016/j.micromeso.2006.06.042

    36. [36]

      (36) Meliá n-Cabrera, I.; Kapteijn, F.; Moulijn, J. A. Chem. Commun. 2005, NO. 21, 2744.

    37. [37]

      (37) Tago, T.; Nakasaka, Y.; Kayoda, A.; Masuda, T. Microporous Mesoporous Mat. 2008, 115, 176. doi: 10.1016/j.micromeso.2007.12.035

    38. [38]

      (38) Shen, D.; Yang, J. H.; Xiao, W.; Li, T. S.; Lu, J. M.; Wang, J.Q. Membr. Sci. Technol. 2011, 31(1), 61. [沈东, 杨建华, 肖伟, 李田生, 鲁金明, 王金渠. 膜科学与技术, 2011, 31(1), 61.]

    39. [39]

      (39) Liu, X. G.; Xu, L.; Zhang, B. Q.; Liu, X. F. Microporous Mesoporous Mat. 2014, 193, 127. doi: 10.1016/j.micromeso.2013.12.034

    40. [40]

      (40) Zhao, S. H.; Lang, L.; Yin, X. L.; Yang, W. S.; Wu, C. Z. Acta Phys. -Chim. Sin. 2015, 31, 793. [赵淑蘅, 郎林, 阴秀丽, 杨文申, 吴创之. 物理化学学报, 2015, 31, 793.] doi: 10.3866/PKU.WHXB201503021

    41. [41]

      (41) Lang, L.; Liu, X. F.; Zhang, B. Q. Appl. Surf. Sci. 2008, 254, 2353. doi: 10.1016/j.apsusc.2007.09.031

    42. [42]

      (42) Lin, Y. S.; Burggraaf, A. J. J. Membr. Sci. 1993, 79, 65. doi: 10.1016/0376-7388(93)85018-R

    43. [43]

      (43) Alsyouri, H. M.; Li, D.; Lin, Y. S.; Ye, Z.; Zhu, S. P. J. Membr. Sci. 2006, 282, 266. doi: 10.1016/j.memsci.2006.05.046

    44. [44]

      (44) Xiao, W.; Yang, J. H.; Shen, D.; Lu, J. M.; Wang, J. Q.Microporous Mesoporous Mat. 2010, 129, 22. doi: 10.1016/j.micromeso.2009.08.036

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    20. [20]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

Metrics
  • PDF Downloads(0)
  • Abstract views(319)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return