Citation: ZHOU Yu, XU Jing, WANG Nan-Nan, YU Zhi-Wu. Excess Spectroscopy: Concept and Applications[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 239-248. doi: 10.3866/PKU.WHXB201511241
-
Excess spectroscopy was proposed following the idea of excess thermodynamic functions. It is complementary to classical excess functions because it provides rich information on molecular interactions. In this review, we introduce in detail the concept of excess spectroscopy and the measurement of excess spectra for the case of infrared spectroscopy. We then describe the merits of using excess spectroscopy to enhance apparent spectral resolution, judge the non-ideality of mixtures, determine the selectivity of molecular interactions, identify distinct species or clusters in solutions, and provide information related to charge distributions in molecules. Following this, we review the progress in methodology where excess spectroscopy is extended to partial molar excess spectroscopy and Raman spectroscopy. The extension of binary mixtures to pseudo binary mixtures and/or liquid samples to solid samples is also described. Finally, we discuss several recent applications of excess spectroscopy in the study of hydrogen-bonding interactions in ionic liquidmolecular solvent systems, halogen-bonding interactions in benzene derivative-dimethylsulfoxide (DMSO) mixtures, and interactions between inorganic cations/anions and water molecules. Clearly, excess spectroscopy has opened a new window through which we can view rich information about molecular interactions.
-
-
[1]
(1) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed; Wiley-VCH Verlag & Co. KGaA: Germany, Weinheim, 2011.
-
[2]
(2) Zhou, K. B.; Li, Y. D. Angew. Chem. Int. Edit. 2012, 51, 602. doi: 10.1002/anie.201102619
-
[3]
(3) Tang, F. Q.; Li, L. L.; Chen, D. Adv. Mater. 2012, 24, 1504. doi: 10.1002/adma.201104763
-
[4]
(4) Czarnecki, M. A.; Czarnik-Matusewicz, B.; Ozaki, Y.; Iwahashi, M. J. Phys. Chem. A 2000, 104, 4906. doi: 10.1021/jp991753e
-
[5]
(5) Fumino, K.; Wulf, A.; Ludwig, R. Angew. Chem. Int. Edit. 2008, 47, 8731. doi: 10.1002/anie.v47:45
-
[6]
(6) Zheng, Y. Z.; Wang, N. N.; Luo, J. J.; Zhou, Y.; Yu, Z. W. Phys. Chem. Chem. Phys. 2013, 15, 18055. doi: 10.1039/c3cp53356e
-
[7]
(7) Scatchard, G.; Hamer, W. J. J. Am. Chem. Soc. 1935, 57, 1805. doi: 10.1021/ja01313a016
-
[8]
(8) Jiang, Y.; Liu, Y.; Sun, X. D.; Yu, Z. W. Thermochim. Acta 1991, 183, 99. doi: 10.1016/0040-6031(91)80449-S
-
[9]
(9) Yu, Z. W.; Liu, Y.; Sun, X. D. J. Solution Chem. 1992, 21, 497. doi: 10.1007/BF00649702
-
[10]
(10) Yu, Z. W.; Liu, Y.; Zhou, R.; Xue, F. Y. Sci. China Ser. B 2001, 44, 315. doi: 10.1007/BF02879622
-
[11]
(11) Zhao, X.; Yu, Z. W.; Zhou, R.; Liu, Y. J. Chem. Eng. Data 2001, 46, 1258. doi: 10.1021/je0100600
-
[12]
(12) Li, Q. Z.; Wu, G. S.; Yu, Z. W. J. Am. Chem. Soc. 2006, 128, 1438. doi: 10.1021/ja0569149
-
[13]
(13) Li, Q. Z.; Wang, N. N.; Zhou, Q.; Sun. S. Q.; Yu, Z. W. Appl. Spectrosc. 2008, 62, 166. doi: 10.1366/000370208783575663
-
[14]
(14) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.] doi: 10.3866/PKU.WHXB20100922
-
[15]
(15) Wang, C. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2012, 28, 1823. [王陈琛, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2012, 28, 1823.] doi: 10.3866/PKU.WHXB201205154
-
[16]
(16) Weng, C. C. Fourier Transform Infrared Spectrometer; Chemical Industry Press: Beijing, 2005. [翁诗甫. 傅里叶变换红外光谱仪. 北京: 化学工业出版社, 2005.]
-
[17]
(17) Hansen, W. N. Spectrochim. Acta 1965, 21, 815. doi: 10.1016/0371-1951(65)80039-X
-
[18]
(18) Wang, N. N.; Zhang, Q. G.; Wu, F. G.; Li, Q. Z.; Yu, Z. W. J. Phys. Chem. B 2010, 114, 8689. doi: 10.1021/jp103438q
-
[19]
(19) Wang, N. N.; Jia, Q.; Li, Q. Z.; Yu, Z. W. J. Mol. Struct. 2008, 883–884, 55.
-
[20]
(20) Jia, Q.; Wang, N. N.; Yu, Z. W. Appl. Spectrosc. 2009, 63, 344.
-
[21]
(21) Zhou, Y.; Zheng, Y. Z.; Sun, H. Y.; Deng, G.; Yu, Z. W. Sci. Rep. 2015, 5, 16379. doi: 10.1038/srep16379
-
[22]
(22) Yang, X. G.; Wu, Q. L. The Analysis and Application of Raman Spectroscopy; National Defence of Industry Press: Beijing, 2008. [杨绪刚, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008.]
-
[23]
(23) Koga, Y.; Sebe, F.; Minami, T.; Otake, K.; Saitow, K. I.; Nishikawa, K. J. Phys. Chem. B 2009, 113, 11928.
-
[24]
(24) Sebe, F.; Nishikawa, K.; Koga, Y. Phys. Chem. Chem. Phys. 2012, 14, 4433. doi: 10.1039/c2cp23255c
-
[25]
(25) Sebe, F.; Nishikawa, K.; Koga, Y. J. Solution Chem. 2015, 44, 1833. doi: 10.1007/s10953-015-0376-3
-
[26]
(26) Wang, N. N.; Wang, Y.; Cheng, H. F.; Tao, Z.; Wang, J.; Wu, W. Z. RSC Adv. 2013, 3, 20237. doi: 10.1039/c3ra42634c
-
[27]
(27) Wang, N. N.; Li, Q. Z.; Yu, Z. W. Appl. Spectrosc. 2009, 63, 1356. doi: 10.1366/000370209790109049
-
[28]
(28) Zhou, Y.; Zheng, Y. Z.; Sun, H. Y., Deng, G.; Yu, Z. W. J. Mol. Struct. 2014, 1069, 251. doi: 10.1016/j.molstruc.2014.02.027
-
[29]
(29) Tong, H. J.; Yu, J. Y.; Zhang, Y. H.; Reid, J. P. J. Phys. Chem. A 2010, 114, 6795. doi: 10.1021/jp912180d
-
[30]
(30) Corsetti, S.; Zehentbauer, F. M.; McGloin, D.; Kiefer, J. Fuel 2015, 141, 136. doi: 10.1016/j.fuel.2014.10.025
-
[31]
(31) Zhang, Q. G.; Wang, N. N.; Yu, Z. W. J. Phys. Chem. B 2010, 114, 4747. doi: 10.1021/jp1009498
-
[32]
(32) Zhang, Q. G.; Wang, N. N.; Wang, S. L.; Yu, Z. W. J. Phys. Chem. B 2011, 115, 11127. doi: 10.1021/jp204305g
-
[33]
(33) Zheng, Y. Z.; He, H. Y.; Zhou, Y.; Yu, Z. W. J. Mol. Struct. 2014, 1069, 140. doi: 10.1016/j.molstruc.2014.01.013
-
[34]
(34) He, H. Y.; Chen, H.; Zheng, Y. Z.; Zhang, X. C.; Yao, X. Q.; Yu, Z. W.; Zhang, S. J. Aust. J. Chem. 2013, 66, 50. doi: 10.1071/CH12308
-
[35]
(35) He, H. Y.; Chen, H.; Zheng, Y. Z.; Zhang, S. J.; Yu, Z. W. Chem. Eng. Sci. 2015, 121, 169. doi: 10.1016/j.ces.2014.07.024
-
[36]
(36) Kiefer, J.; Molina, M. M.; Noack, K. ChemPhysChem 2012, 13, 1213. doi: 10.1002/cphc.v13.5
-
[37]
(37) Zheng, Y. Z.; Wang, N, N.; Zhou, Y.; Sun, H. Y.; Yu, Z. W. Phys. Chem. Chem. Phys. 2014, 16, 6946. doi: 10.1039/c3cp55451a
-
[38]
(38) Zheng, Y. Z.; Deng, G.; Zhou, Y.; Sun, H. Y.; Yu, Z. W. ChemPhysChem 2015, 16, 2594. doi: 10.1002/cphc.v16.12
-
[39]
(39) Dumas, J. M.; Gomel, M.; Guerin, M. Halides, Pseudo-Halides and Azides 1983, 2, 985.
-
[40]
(40) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291. doi: 10.1007/s00894-006-0130–2
-
[41]
(41) Politzer, P.; Murray, J. S. ChemPhysChem 2013, 14, 278. doi: 10.1002/cphc.201200799
-
[42]
(42) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748. doi: 10.1039/c004189k
-
[43]
(43) Metrangolo, P.; Resnati, G.; Pilati, T.; Biella, S. Halogen Bonding in Crystal Engineering; Springer: Berlin Heidelberg, 2008.
-
[1]
-
-
[1]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[2]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[3]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[4]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[5]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[6]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[7]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[8]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[9]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[10]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[11]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[12]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[13]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[14]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[15]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[16]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[17]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[18]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[19]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[20]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(279)
- HTML views(31)