Citation: YAN Bo, ZHOU Huan, LI Wen-Xuan. Studies on the Characteristics and Behaviors of the Ion Association Structures of SO42- in Na+,Mg2+//SO42-, Cl-,H2O System by Raman Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 405-414. doi: 10.3866/PKU.WHXB201511192 shu

Studies on the Characteristics and Behaviors of the Ion Association Structures of SO42- in Na+,Mg2+//SO42-, Cl-,H2O System by Raman Spectroscopy

  • Corresponding author: ZHOU Huan, 
  • Received Date: 27 July 2015
    Available Online: 16 November 2015

    Fund Project: 国家自然科学基金(21176189,U1407204) (21176189,U1407204)天津市应用基础与前沿技术研究计划(15JCYBJC23200) (15JCYBJC23200)教育部科研创新团队培育计划([2013]373) ([2013]373)天津市高等学校创新团队培养计划(TD12-5004)资助项目 (TD12-5004)

  • Stable and metastable solid-liquid equilibria phenomena and complex salt-forming behaviors exist in complex salt-water systems. To realize the relationship between salt-forming behavior and liquid structure, the characteristics of ion association structures of SO42- in Na+, Mg2+//SO42-, Cl-, H2O system and its binary, ternary subsystems were studied by Raman spectroscopy, combined with a Gauss-Lorentz peak fitting program. The spectrum experimental results show that there were two ion association structures of SO42- as non-associated SO42- and SO42- groups in the Na2SO4-H2O system, while in the MgSO4-H2O, MgSO4-MgCl2-H2O, and Na+, Mg2+//SO42-, Cl-, H2O systems, there were also Mg2+-H2O-SO42- and Mg2+-OSO32- structures. Non-associated SO42- was the main structure in the ν1-SO42- band of binary (MgSO4 Na2SO4) and ternary (MgSO4-MgCl2-H2O) subsystems, and with varying SO42- concentration, these four types of SO42- ion association structure varied regularly. Likewise, the ion association structures of SO42- in the Na+, Mg2+//SO42-, Cl-, H2O system changed regularly during both the processes of NaCl crystallization and isothermal evaporation. This was evident when, during the process of decreasing NaCl concentration and increasing MgSO4, the content of non-associated SO42- decreased, the chance of Mg2+-H2O-SO42- and Mg2+-OSO32- structure formation increased, and the SO42- group structure appeared in the astrachanite region. More importantly, the adaptive changes in solution structure during the progress of evaporation can result in the appearance of metastable phenomena. Further linear analysis showed that the concentration and Jänecke index (J) value of SO42- were positively related to the intensity and peak area of the ν1-SO42- band, and the concentration of Mg2+ affected the contents of four ion association structures in the ν1-SO42- band mainly.
  • 加载中
    1. [1]

      (1) Precht, H.; Cohen, E. Investigations on the Conditions of Formation of Oceanic Salt Deposits, Especially of the Stassfurt Deposit (the Papers of Hoff, V); AkademischeVeriagsgeselischaft m.b.H.: Leipzing, 1912; pp 10-35.

    2. [2]

      (2) Voigt, W. Pure Appl. Chem. 2011, 83 (5), 1015.

    3. [3]

      (3) Balarew, C.; Karaivanova, V.; Commun.T. Dept. Chem. Bulg. Acad. Sci. 1970, 3, 637.

    4. [4]

      (4) Wollmann, G.; Voigt, W. Fluid Phase Equilib. 2010, 291 (2), 151. doi: 10.1016/j.fluid.2009.12.005

    5. [5]

      (5) Teeple, J. E. The Industrial Development of Searles Lake Brines, with Equilibrium Data; The Chemical CatalogCompany Inc.: New York, 1929; pp 112-154.

    6. [6]

      (6) Kurnakow, N. S.; Nikolaew, V. I. Izv. Sekt. Fiz.-Khim Anal. Akad. Nauk SSSR 1938, 10, 333.

    7. [7]

      (7) Jin, Z. M.; Shang, X. Z.; Liang, S. M. Acta Chim. Sin. 1980, 38(4), 313. [金作美, 尚显志, 梁式梅. 化学学报, 1980, 38 (4), 313.]

    8. [8]

      (8) Jin, Z. M.; Zhou, H. N.; Wang, L. S. Chem. J. Chin. Univ. 2001, 22 (4), 634. [金作美, 周惠南, 王励生. 高等学校化学学报, 2001, 22 (4), 634.]

    9. [9]

      (9) Jin, Z. M.; Zhou, H. N.; Wang L. S. Chem. J. Chin. Univ. 2002, 23 (4), 690. [金作美, 周惠南, 王励生. 高等学校化学学报, 2002, 23 (4), 690.]

    10. [10]

      (10) Zhou, H.; Zhang, H. L.; Chen, Y. D. J. Chem. Eng. Data 2012, 57 (3), 943. doi: 10.1021/je201196q

    11. [11]

      (11) Zhou, H.; Zhang, J. B.; Zhang, H. L. J. Chem. Eng. Data 2012, 57 (4), 1192. doi: 10.1021/je201239s

    12. [12]

      (12) Zhou, H.; Cui, S. G.; Sha, Z. L. Acta Chim. Sin. 2008, 66 (12), 1483. [周桓, 崔世广, 沙作良.化学学报, 2008, 66 (12), 1483.]

    13. [13]

      (13) Zhou, H.; Cui, S. G.; Sha, Z. L. Chem. J. Chin. Univ. 2008, 29(10), 2049. [周桓, 崔世广, 沙作良. 高等学校化学学报, 2008, 29 (10), 2049.]

    14. [14]

      (14) Zhou, H.; Chen, Y. D.; Kang, Q. Y. Chin. J. Chem. Eng. 2014, 18 (4), 635.

    15. [15]

      (15) Zhou, H.; Bao, Y. J.; Bai, X. Q. Fluid Phase Equilibria 2014, 362, 281. doi: 10.1016/j.fluid.2013.10.025

    16. [16]

      (16) Zhou, H. Product Sodium Chloride and Epsom Salt by Brine.ZL Patent 200810054198.6. 2010-02-10. [周桓. 用卤水生产氯化钠及七水硫酸镁方法: 中国, ZL 200810054198.6[P].2010-02-10.]

    17. [17]

      (17) Fang, C. H.; Fang, Y.; Gou, Y. M.; Yang, B.; Lei, Y. C. Acta Chim. Sin. 2004, 62 (3), 268. [房春晖, 房艳, 郭亚梅, 杨波, 雷亚川. 化学学报, 2004, 62 (3), 268.]

    18. [18]

      (18) Rull, F. Pure Appl. Chem. 2002, 74 (10), 1859.

    19. [19]

      (19) Tepavitcharova, S.; Balarew, C.; Rull, F. J. Raman Spectrosc. 2005, 36, 891.

    20. [20]

      (20) Guo, X.; Chen, S. H.; Shang, Z. J.; Guo, Y. C.; Zhang, Y. H.Acta Phys. -Chim. Sin. 2012, 28 (4), 766. [郭鑫, 陈斯华, 商志军, 郭郁葱, 张韬宏. 物理化学学报, 2012, 28 (4), 766.] doi: 10.3866/PKU.WHXB201202021

    21. [21]

      (21) Dong, J. L.; Li, X. H.; Zhao, L. J.; Xiao, H. S.; Wang, F.; Guo, X.; Zhang, Y. H. J. Phys. Chem. B 2007, 111 (10), 12170.

    22. [22]

      (22) Zhang, Y. H.; Chan, C. K. J. Phys. Chem. A 2002, 106 (2), 285. doi: 10.1021/jp012694j

    23. [23]

      (23) Wang, F.; Zhang, Y. H.; Li, S. H.; Wang, L.Y.; Zhao, L. J. Anal. Chem. 2005, 77 (22), 7148. doi: 10.1021/ac050938g

    24. [24]

      (24) Li, X. H.; Zhao, L. J.; Dong, J. L.; Xiao, H. S.; Zhang, Y. H.J. Phys. Chem. B 2008, 112 (16), 5032. doi: 10.1021/jp709938x

    25. [25]

      (25) Zhang, H.; Zhang, Y. H.; Wang, F. J. Comput. Chem. 2009, 30(3), 493. doi: 10.1002/jcc.v30:3

    26. [26]

      (26) Guo, X.; Shou, J. J.; Zhang, Y. H.; Reid, J. P. Analyst 2010, 135 (3), 495. doi: 10.1039/b918978e

    27. [27]

      (27) Syed, K. A.; Pang, S. F.; Zhang, Y.; Zhang, Y. H. J. Chem. Phys. 2013, 138 (2), 024901. doi: 10.1063/1.4773585

    28. [28]

      (28) Rudolph, W.W.; Brooker, M. H.; Tremaine, P. R. J. Solution Chem. 1999, 28 (7), 621.

    29. [29]

      (29) Hayes, A. C.; Kruus, P.; Adams, W. A. J. Solution Chem. 1984, 13 (1), 61. doi: 10.1007/BF00648592

    30. [30]

      (30) Kruus, P.; Hayes, A. C.; Adams, W. A. J. Solution Chem. 1985, 14 (2), 117. doi: 10.1007/BF00648900

    31. [31]

      (31) Dong, J. L.; Xiao, H. S.; Zhao, L. J.; Zhang, Y. H. J. Raman Spectrosc. 2009, 40, 338. doi: 10.1002/jrs.v40:3

    32. [32]

      (32) Vizcayno, C.; Garcia-Gonzalez, M. T. Acta Crystallogr. Sect. C 1999, 55, 8. doi: 10.1107/S0108270198011135

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(1)
  • Abstract views(350)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return