Citation: WANG Xiu-Feng, ZHANG Li, LIU Ming-Hua. Supramolecular Gels: Structural Diversity and Supramolecular Chirality[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 227-238. doi: 10.3866/PKU.WHXB201511181 shu

Supramolecular Gels: Structural Diversity and Supramolecular Chirality

  • Corresponding author: LIU Ming-Hua, 
  • Received Date: 14 October 2015
    Available Online: 17 November 2015

    Fund Project: 国家重点基础研究发展规划项目(973)(2013CB834504) (973)(2013CB834504)国家自然科学基金(21321063,91427302) (21321063,91427302)中国科学院先导专项(XDB12020200) (XDB12020200)山东省优秀中青年科学家科研奖励基金(BS2014CL028) (BS2014CL028)中央高校基本科研业务费专项资金(15CX02052A)资助 (15CX02052A)

  • Supramolecular gels, an important type of soft matter, have showed unique advantages in the construction of functional soft materials, such as multiple stimuli responsive, photoelectrical, and biological compatibility materials. Through supramolecular gelation, diverse, uniform nanostructures can be obtained in a large quantity. On the other hand, most gelators are chiral molecules, so supramolecular gel is a medium to realize the expression of the chirality in supramolecular and nano level, especially to realize effectively chirality transfer, amplification, and asymmetric catalysis, and to fabricate various chiral architectures. In this paper, we describe the structural diversity and chirality in supramolecular gels, and discuss the future prospects for supramolecular gels.
  • 加载中
    1. [1]

      (1) George, M.; Weiss, R. G. Accounts Chem. Res. 2006, 39, 489. doi: 10.1021/ar0500923

    2. [2]

      (2) Dastidar, P. Chem. Soc. Rev. 2008, 37 (12), 2699. doi: 10.1039/b807346e

    3. [3]

      (3) Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Chem. Rev. 2010, 110 (4), 1960. doi: 10.1021/cr9003067

    4. [4]

      (4) Hirst, A. R.; Smith, D. K. Chem. -Eur. J. 2005, 11 (19), 5496.

    5. [5]

      (5) Weiss, R. G. J. Am. Chem. Soc. 2014, 136 (21), 7519. doi: 10.1021/ja503363v

    6. [6]

      (6) Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Angew. Chem. Int. Edit. 2012, 51 (8), 1766. doi: 10.1002/anie.v51.8

    7. [7]

      (7) Diaz Diaz, D.; Kuhbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40 (1), 427. doi: 10.1039/C005401C

    8. [8]

      (8) Wang, J.; Yang, G.; Jiang, H.; Zou, G.; Zhang, Q. Soft Matter 2013, 9 (41), 9785. doi: 10.1039/c3sm51896e

    9. [9]

      (9) Praveen, V. K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53 (2), 365. doi: 10.1002/anie.v53.2

    10. [10]

      (10) Yang, Z.; Liang, G.; Xu, B. Accounts Chem. Res. 2008, 41, 315. doi: 10.1021/ar7001914

    11. [11]

      (11) Gao, Y.; Zhao, F.; Wang, Q.; Zhang, Y.; Xu, B. Chem. Soc. Rev. 2010, 39 (9), 3425. doi: 10.1039/b919450a

    12. [12]

      (12) Li, W. S.; Jia, X. R.; Wang, B. B.; Ji, Y.; Wei, Y. Tetrahedron 2007, 63 (36), 8794. doi: 10.1016/j.tet.2007.06.028

    13. [13]

      (13) Xue, M.; Miao, Q.; Fang, Y. Acta Phys. -Chim. Sin. 2013, 29 (9), 2005. [薛敏, 苗青, 房喻. 物理化学学报, 2013, 29 (9), 2005.] doi: 10.3866/PKU.WHXB201306142

    14. [14]

      (14) Zhong, J. L.; Pan, H.; Luo, X. Z.; Hong, S. G.; Zhang, N.; Huang, J. B. Acta Phys. -Chim. Sin., 2014, 30 (9), 1688. [钟金莲, 潘虹, 罗序中, 洪三国, 张宁, 黄建滨. 物理化学学报, 2014, 30 (9), 1688.] doi: 10.3866/PKU.WHXB201407041

    15. [15]

      (15) Amabilino, D.; Veciana, J. Supramolecular Chiral Functional Materials. In Supramolecular Chirality; Crego-Calama, M., Reinhoudt, D., Eds.; Springer Berlin Heidelberg: 2006; Vol. 265, p 253.

    16. [16]

      (16) Dawn, A.; Shiraki, T.; Haraguchi, S.; Sato, H.; Sada, K.; Shinkai, S. Chem. -Eur. J. 2010, 16 (12), 3676. doi: 10.1002/chem.v16:12

    17. [17]

      (17) Cornelissen, J. J.; Rowan, A. E.; Nolte, R. J.; Sommerdijk, N. A. Chem. Rev. 2001, 101 (12), 4039. doi: 10.1021/cr990126i

    18. [18]

      (18) Yashima, E.; Maeda, K.; Furusho, Y. Accounts Chem. Res. 2008, 41 (9), 1166. doi: 10.1021/ar800091w

    19. [19]

      (19) de Jong, J. J.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Science 2004, 304, 278. doi: 10.1126/science.1095353

    20. [20]

      (20) Das, A. K.; Bose, P. P.; Drew, M. G.; Banerjee, A. Tetrahedron 2007, 63 (31), 7432. doi: 10.1016/j.tet.2007.05.045

    21. [21]

      (21) Palui, G.; Garai, A.; Nanda, J.; Nandi, A. K.; Banerjee, A. J. Phys. Chem. B 2009, 114 (3), 1249.

    22. [22]

      (22) Zhu, X. F.; Duan, P. F.; Zhang, L.; Liu, M. H. Chem. -Eur. J. 2011, 17 (12), 3429. doi: 10.1002/chem.v17.12

    23. [23]

      (23) Qin, L.; Xie, F.; Jin, X.; Liu, M. Chem. -Eur. J. 2015, 21 (32), 11300. doi: 10.1002/chem.201500929

    24. [24]

      (24) Wang, X.; Duan, P.; Liu, M. Chem. -Asian J. 2014, 9 (3), 770. doi: 10.1002/asia.v9.3

    25. [25]

      (25) Qing, G.; Shan, X.; Chen, W.; Lv, Z.; Xiong, P.; Sun, T. Angew. Chem. Int. Edit. 2014, 53 (8), 2124. doi: 10.1002/anie.201308554

    26. [26]

      (26) Meazza, L.; Foster, J. A.; Fucke, K.; Metrangolo, P.; Resnati, G.; Steed, J. W. Nat. Chem. 2013, 5 (1), 42. doi: 10.1038/nchem.1496

    27. [27]

      (27) Xu, H. Q.; Song, J.; Tian, T.; Feng, R. X. Soft Matter 2012, 8 (12), 3478. doi: 10.1039/c2sm07387k

    28. [28]

      (28) Miao, W.; Qin, L.; Yang, D.; Jin, X.; Liu, M. Chem. -Eur. J. 2015, 21 (3), 1064. doi: 10.1002/chem.201405406

    29. [29]

      (29) Babu, S. S.; Mahesh, S.; Kartha, K. K.; Ajayaghosh, A. Chem. Asian J. 2009, 4 (6), 824. doi: 10.1002/asia.v4:6

    30. [30]

      (30) Lv, K.; Zhang, L.; Liu, M. Langmuir 2014, 30 (31), 9295. doi: 10.1021/la502335p

    31. [31]

      (31) Kulbaba, K.; Cheng, A.; Bartole, A.; Greenberg, S.; Resendes, R.; Coombs, N.; Safa-Sefat, A.; Greedan, J. E.; Stöver, H. D. H.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc. 2002, 124 (42), 12522. doi: 10.1021/ja0202053

    32. [32]

      (32) Cao, X.; Gao, A.; Lv, H.; Wu, Y.; Wang, X.; Fan, Y. Org. Biomol. Chem. 2013, 11 (45), 7931. doi: 10.1039/c3ob41449c

    33. [33]

      (33) Huang, C.; Wen, L.; Liu, H.; Li, Y.; Liu, X.; Yuan, M.; Zhai, J.; Jiang, L.; Zhu, D. Adv. Mater. 2009, 21 (17), 1721. doi: 10.1002/adma.v21:17

    34. [34]

      (34) Wang, M.; Mohebbi, A. R.; Sun, Y.; Wudl, F. Angew. Chem. Int. Edit. 2012, 51 (28), 6920. doi: 10.1002/anie.201201796

    35. [35]

      (35) Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H. J. Am. Chem. Soc. 2004, 126 (5), 1322. doi: 10.1021/ja036878i

    36. [36]

      (36) Zhou, W.; Lin, L.; Zhao, D.; Guo, L. J. Am. Chem. Soc. 2011, 133 (22), 8389. doi: 10.1021/ja201101p

    37. [37]

      (37) Wang, X.; Duan, P.; Liu, M. Chem. -Eur. J. 2013, 19 (47), 16072. doi: 10.1002/chem.201302200

    38. [38]

      (38) Banerjee, S.; Datta, A. Langmuir 2010, 26 (2), 1172. doi: 10.1021/la902265e

    39. [39]

      (39) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366 (6453), 324. doi: 10.1038/366324a0

    40. [40]

      (40) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem. Int. Edit. 2001, 40, 988.

    41. [41]

      (41) Zhan, C. L.; Gao, P.; Liu, M. H. Chem. Commun. 2005, No. 4, 462.

    42. [42]

      (42) Liu, Y. Q.; Wang, T. Y.; Li, Z. B.; Liu, M. H. Chem. Commun. 2013, 49 (42), 4767. doi: 10.1039/c3cc41786g

    43. [43]

      (43) Duan, P. F.; Qin, L.; Zhu, X. F.; Liu, M. H. Chem. -Eur. J. 2011, 17 (23), 6389. doi: 10.1002/chem.201003049

    44. [44]

      (44) Zhu, X. F.; Li, Y. G.; Duan, P. F.; Liu, M. H. Chem. -Eur. J. 2010, 16 (27), 8034. doi: 10.1002/chem.201000595

    45. [45]

      (45) Jin, Q.; Zhang, L.; Liu, M. Chem. -Eur. J. 2013, 19 (28), 9234. doi: 10.1002/chem.v19.28

    46. [46]

      (46) Cao, H.; Duan, P. F.; Zhu, X. F.; Jiang, J.; Liu, M. H. Chem. -Eur. J. 2012, 18 (18), 5546. doi: 10.1002/chem.v18.18

    47. [47]

      (47) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Nature 1999, 399 (6736), 566. doi: 10.1038/21154

    48. [48]

      (48) Adamcik, J.; Castelletto, V.; Bolisetty, S.; Hamley, I. W.; Mezzenga, R. Angew. Chem. Int. Edit. 2011, 50 (24), 5495. doi: 10.1002/anie.201100807

    49. [49]

      (49) Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T. Langmuir 2001, 17 (23), 7229. doi: 10.1021/la0109516

    50. [50]

      (50) Yan, Y.; Fang, J.; Liang, J.; Zhang, Y.; Wei, Z. Chem. Commun. 2012, 48 (23), 2843. doi: 10.1039/c2cc17235f

    51. [51]

      (51) Huang, B.; Hirst, A. R.; Smith, D. K.; Castelletto, V.; Hamley, I. W. J. Am. Chem. Soc. 2005, 127 (19), 7130. doi: 10.1021/ja050412d

    52. [52]

      (52) Oda, R.; Huc, I.; Candau, S. J. Angew. Chem. Int. Edit. 1998, 37 (19), 2689.

    53. [53]

      (53) Berthier, D.; Buffeteau, T.; Leger, J. M.; Oda, R.; Huc, I. J. Am. Chem. Soc. 2002, 124, 13486. doi: 10.1021/ja027660j

    54. [54]

      (54) Brizard, A.; Aime, C.; Labrot, T.; Huc, I.; Berthier, D.; Artzner, F.; Desbat, B.; Oda, R. J. Am. Chem. Soc. 2007, 129 (12), 3754. doi: 10.1021/ja0682172

    55. [55]

      (55) Wang, X. F.; Duan, P. F.; Liu, M. H. Chem. Commun. 2012, 48 (60), 7501. doi: 10.1039/c2cc33246a

    56. [56]

      (56) Cao, H.; Yuan, Q. Z.; Zhu, X. F.; Zhao, Y. P.; Liu, M. H. Langmuir 2012, 28 (43), 15410. doi: 10.1021/la303263g

    57. [57]

      (57) Pashuck, E. T.; Stupp, S. I. J. Am. Chem. Soc. 2010, 132 (26), 8819. doi: 10.1021/ja100613w

    58. [58]

      (58) Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B. Chem. Soc. Rev. 2013, 42 (17), 7086. doi: 10.1039/C2CS35436E

    59. [59]

      (59) Zhu, G.; Dordick, J. S. Chem. Mater. 2006, 18 (25), 5988. doi: 10.1021/cm0619297

    60. [60]

      (60) Zhao, C. X.; Wang, H. T.; Li, M. Acta Phys. -Chim. Sin. 2014, 30 (12), 2197. [赵呈孝, 王海涛, 李敏. 物理化学学报, 2014, 30 (12), 2197.] doi: 10.3866/PKU.WHXB201410211

    61. [61]

      (61) Puigmartí-Luis, J.; del Pino, Á. P.; Laukhin, V.; Feldborg, L. N.; Rovira, C.; Laukhina, E.; Amabilino, D. B. J. Mater. Chem. 2010, 20 (3), 466. doi: 10.1039/B917751E

    62. [62]

      (62) Yu, W.; Li, Y. G.; Wang, T. Y.; Liu, M. H.; Li, Z. S. Acta Phys. -Chim. Sin. 2008, 24 (9), 1535. [于微, 李远刚, 王天宇, 刘鸣华, 李占双. 物理化学学报, 2008, 24 (9), 1535.] doi: 10.1016/S1872-1508(08)60062-5

    63. [63]

      (63) Pal, A.; Dey, J. Langmuir 2011, 27 (7), 3401. doi: 10.1021/la105027b

    64. [64]

      (64) Ramakanth, I.; Patnaik, A. J. Phys. Chem. B 2012, 116 (9), 2722. doi: 10.1021/jp2096345

    65. [65]

      (65) Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50 (28), 3702. doi: 10.1039/c4cc00311j

    66. [66]

      (66) Wang, X. F.; Yang, D.; Liu, M. H. Imaging Sci. Photochem. 2015, 33 (1), 49. [王秀凤, 杨东, 刘鸣华. 影像科学与光化学, 2015, 33 (1), 49.]

    67. [67]

      (67) Yagai, S.; Kitamura, A. Chem. Soc. Rev. 2008, 37 (8), 1520. doi: 10.1039/b703092b

    68. [68]

      (68) Wang, X.; Liu, M. Chem. -Eur. J. 2014, 20 (32), 10110. doi: 10.1002/chem.v20.32

    69. [69]

      (69) Yu, X. D.; Chen, L. M.; Zhang, M. M.; Yi, T. Chem. Soc. Rev. 2014, 43 (15), 5346. doi: 10.1039/C4CS00066H

    70. [70]

      (70) Wang, Y.; Zhan, C.; Fu, H.; Li, X.; Sheng, X.; Zhao, Y.; Xiao, D.; Ma, Y.; Ma, J. S.; Yao, J. Langmuir 2008, 24 (15), 7635. doi: 10.1021/la801499y

    71. [71]

      (71) Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. J. Am. Chem. Soc. 2011, 133 (40), 16054. doi: 10.1021/ja2039369

    72. [72]

      (72) Chen, H. B.; Zhou, Y.; Yin, J.; Yan, J.; Ma, Y.; Wang, L.; Cao, Y.; Wang, J.; Pei, J. Langmuir 2009, 25 (10), 5459. doi: 10.1021/la9010086

    73. [73]

      (73) Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9 (16), 4198. doi: 10.1039/c3sm27050e

    74. [74]

      (74) Jin, Q. X.; Zhang, L.; Zhu, X. F.; Duan, P. F.; Liu, M. H. Chem. -Eur. J. 2012, 18 (16), 4916. doi: 10.1002/chem.v18.16

    75. [75]

      (75) Chen, J.; Wu, W.; McNeil, A. J. Chem. Commun. 2012, 48 (58), 7310. doi: 10.1039/c2cc33486k

    76. [76]

      (76) Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11 (9–10), 1025. doi: 10.1002/smll.v11.9-10

    77. [77]

      (77) Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115 (15), 7304. doi: 10.1021/cr500671p

    78. [78]

      (78) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100 (5), 1789. doi: 10.1021/cr9900228

    79. [79]

      (79) Jin, Q. X.; Li, J.; Li, X. G.; Zhang, L.; Fang, S. M.; Liu, M. H. Prog. Chem. 2014, 26 (6), 919. [靳清贤, 李晶, 李孝刚,
      张莉, 方少明, 刘鸣华. 化学进展, 2014, 26 (6), 919.]

    80. [80]

      (80) Das, R. K.; Kandanelli, R.; Linnanto, J.; Bose, K.; Maitra, U. Langmuir 2010, 26 (20), 16141. doi: 10.1021/la1029905

    81. [81]

      (81) Duan, P. F.; Zhu, X. F.; Liu, M. H. Chem. Commun. 2011, 47 (19), 5569. doi: 10.1039/c1cc10813a

    82. [82]

      (82) Kar, T.; Mandal, S. K.; Das, P. K. Chem. -Eur. J. 2011, 17 (52), 14952. doi: 10.1002/chem.201101173

    83. [83]

      (83) Duan, P. F.; Cao, H.; Zhang, L.; Liu, M. H. Soft Matter 2014, 10 (30), 5428. doi: 10.1039/C4SM00507D

    84. [84]

      (84) Zhang, W.; Fujiki, M.; Zhu, X. Chem. -Eur. J. 2011, 17 (38), 10628. doi: 10.1002/chem.201100208

    85. [85]

      (85) Yang, D.; Liu, C.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50 (84), 12688. doi: 10.1039/C4CC05406G

    86. [86]

      (86) Sobczuk, A. A.; Tsuchiya, Y.; Shiraki, T.; Tamaru, S. I.; Shinkai, S. Chem. -Eur. J. 2012, 18 (10), 2832. doi: 10.1002/chem.201103249

    87. [87]

      (87) Lv, K.; Qin, L.; Wang, X. F.; Zhang, L.; Liu, M. H. Phys. Chem. Chem. Phys. 2013, 15 (46), 20197. doi: 10.1039/c3cp53620c

    88. [88]

      (88) Samanta, S. K.; Bhattacharya, S. Chem. Commun. 2013, 49 (14), 1425. doi: 10.1039/c2cc38221k

    89. [89]

      (89) Stepanenko, V.; Li, X. Q.; Gershberg, J.; Würthner, F. Chem. -Eur. J. 2013, 19 (13), 4176. doi: 10.1002/chem.201204146

    90. [90]

      (90) Lifson, S.; Green, M. M.; Andreola, C.; Peterson, N. J. Am. Chem. Soc. 1989, 111 (24), 8850. doi: 10.1021/ja00206a013

    91. [91]

      (91) Prins, L. J.; Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 2001, 123 (42), 10153. doi: 10.1021/ja010610e

    92. [92]

      (92) Ishi-i, T.; Kuwahara, R.; Takata, A.; Jeong, Y.; Sakurai, K.; Mataka, S. Chem. -Eur. J. 2006, 12 (3), 763.

    93. [93]

      (93) Nam, S. R.; Lee, H. Y.; Hong, J. I. Chem. -Eur. J. 2008, 14 (20), 6040. doi: 10.1002/chem.v14:20

    94. [94]

      (94) van Gestel, J. Macromolecules 2004, 37 (10), 3894. doi: 10.1021/ma030480p

    95. [95]

      (95) van Gestel, J.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127 (15), 5490. doi: 10.1021/ja0501666

    96. [96]

      (96) Palmans, A. R. A.; Meijer, E. W. Angew. Chem. Int. Edit. 2007, 46 (47), 8948.

    97. [97]

      (97) Cao, H.; Zhu, X. F.; Liu, M. H. Angew. Chem. Int. Edit. 2013, 52 (15), 4122. doi: 10.1002/anie.201300444

    98. [98]

      (98) Stals, P. J.; Korevaar, P. A.; Gillissen, M. A.; de Greef, T. F.; Fitié, C. F.; Sijbesma, R. P.; Palmans, A. R.; Meijer, E. Angew. Chem. Int. Edit. 2012, 124 (45), 11459. doi: 10.1002/ange.201204727

    99. [99]

      (99) Keith, C.; Reddy, R. A.; Hauser, A.; Baumeister, U.; Tschierske, C. J. Am. Chem. Soc. 2006, 128 (9), 3051. doi: 10.1021/ja057685t

    100. [100]

      (100) Kimura, M.; Hatanaka, T.; Nomoto, H.; Takizawa, J.; Fukawa, T.; Tatewaki, Y.; Shirai, H. Chem. Mater. 2010, 22 (20), 5732. doi: 10.1021/cm102276a

    101. [101]

      (101) Zhang, S.; Yang, S.; Lan, J.; Yang, S.; You, J. Chem. Commun. 2008, No. 46, 6170. doi: 10.1039/B813375A

    102. [102]

      (102) Shen, Z.; Wang, T.; Liu, M. Angew. Chem. Int. Edit. 2014, 126 (49), 13642. doi: 10.1002/ange.201407223

    103. [103]

      (103) Jin, Q. X.; Zhang, L.; Cao, H.; Wang, T. Y.; Zhu, X. F.; Jiang, J.; Liu, M. H. Langmuir 2011, 27 (22), 13847. doi: 10.1021/la203110z

    104. [104]

      (104) Liu, G. F.; Zhang, D.; Feng, C. L. Angew. Chem. Int. Edit. 2014, 53 (30), 7789. doi: 10.1002/anie.201403249

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    8. [8]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(2)
  • Abstract views(678)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return