Citation: JIN Yan-Xia, TANG Cen, MENG Xiu-Qing, WANG Xiao-Xia, XIE Guan-Qun, LUO Meng-Fei, LI Xiao-Nian. Highly Stable CsNO3/SiO2 Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 510-518. doi: 10.3866/PKU.WHXB201511134
-
CsNO3/SiO2 catalysts were prepared using an impregnation method, and were applied in the vapor phase catalytic synthesis of vinylidene chloride (VDC) from 1,1,2-trichloroethane (TCE). The influence of reaction temperature on the deactivation of CsNO3/SiO2 catalysts was investigated in detail. It was found that low reaction temperatures (< 350 ℃) lead to a rapid deactivation, while high reaction temperatures (> 400 ℃) result in a high and stable catalytic activity. During the dehydrochlorination process, CsNO3 species were transformed into CsCl, and coke was formed and deposited on the catalyst surface. However, the chemical change of the Cs species and deposited coke were not the main reason for the deactivation of CsNO3/SiO2 catalyst. Some chlorine-containing species (organic products or HCl) were formed during the reaction and were difficult to desorb from the catalyst surface, which accounts for the deactivation of CsNO3/SiO2 catalysts at low reaction temperatures. High temperature treatment (550 ℃) in a non-oxidizing atmosphere could remove the contaminants and regenerate the catalysts completely. The life test of CsNO3/SiO2 catalyst was carried out at 400 ℃ for 100 h. The TCE conversion and the selectivity to VDC remained stable at 98% and 78%, respectively, showing good prospect for industrial applications.
-
-
[1]
(1) Cui, X. M. Chem. Ind. 2010, 28, 15. [崔小明. 化学工业, 2010, 28, 15.]
-
[2]
(2) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.; Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英, 苏曼, 苏文, 尹笃林, 刘述斌. 物理化学学报, 2013, 29, 43.] doi: 10.3866/PKU.WHXB201211121
-
[3]
(3) Wang, D. R. China Chlor.-Alkali 2008, No. 10, 21. [汪多仁. 中国氯碱, 2008, No. 10, 21.]
-
[4]
(4) Steven, M. D.; Hotchkiss, J. H. Packag. Technol. Sci. 2002, 15, 17.
-
[5]
(5) Chaliha, M.; Cusack, A.; Currie, M.; Sultanbawa, Y.; Smyth, H.J. Agric. Food Chem. 2013, 61, 5738. doi: 10.1021/jf400845t
-
[6]
(6) Qian, J. Process development on Saponification Reaction of1, 1, 2-trichloroethane into Vinylidene Chloride. M.S.Dissertation, East China University of Science and Technology, Shanghai, 2008. [钱江. 1, 1, 2-三氯乙烷皂化反应制备偏二氯乙烯过程开发[D]. 上海: 华东理工大学, 2008.]
-
[7]
(7) Katayama, K.; Yoshida, N.; Hino, T. Method for ManufacturingVinylidene Chloride. JP Patent 04338341A, 1992.
-
[8]
(8) Milchert, E.; Pazdzioch, W. Ind. Eng. Chem. Res. 1999, 38, 391. doi: 10.1021/ie9801709
-
[9]
(9) Svoboda, J.; Ondrus, I.; Mazanec. J. Petrochemia 1980, 20, 120.
-
[10]
(10) Zhu, M. D. Tech. Dev. Chem. Ind. 2009, 38, 22. [朱茂电. 化工技术与开发, 2009, 38, 22.]
-
[11]
(11) Yuan, X. Q.; Jiang, P.; Song, H. Y.; Feng, D. L. Method forPreparation of Vinylidene Chloride by Gas Phase CatalyticCracking of Trichloroethane. CN Patent 102030608A, 2011-04-27. [袁向前, 蒋鹏, 宋宏宇, 冯大龙. 气相催化裂解制备偏二氯乙烯的方法: 中国, CN 102030608A, 2011-04-27.]
-
[12]
(12) Franklin, C.; Gould, M. L. Manufacture of Vinylidene Chloride.US Patent 2989570A, 1959.
-
[13]
(13) Jiang, P. Study on Vapor Phase Catalytic Dehydrochlorinationof 1, 1, 2-Trichloroethane into Vinylidene Chloride over MetalHalide. Master. Dissertation, East China University of Scienceand Technology, Shanghai, 2011. [蒋鹏. 金属卤化物催化1, 1, 2-三氯乙烷裂解制备偏二氯乙烯的工艺研究[D]. 上海: 华东理工大学, 2011.]
-
[14]
(14) Zoltanski, A.; Lach, J.; Halaburdo, N.; Pokorska, Z. Przem. Chem. 1990, 69, 112.
-
[15]
(15) Ide, T.; Kitamura, T. Preparation of Vinylidene Chloride from1, 1, 2-Trichloroethane with Cesium-Exchanged Zeolite. JPPatent 02101029A, 1988.
-
[16]
(16) Zhang, S. Q.; Kong, L. D.; Zhao, X.; Jansen, R.; Chen, J. M.Acta Phys. -Chim. Sin. 2013, 29, 2027. [张拴勤, 孔令东, 赵希, 罗兰·詹森, 陈建民. 物理化学学报, 2013, 29, 2027.] doi: 10.3866/PKU.WHXB201306171
-
[17]
(17) Mochida, I.; Watanabe, H.; Uchino, A.; Fujitsu, H.; Takeshita, K.; Furuno, M.; Sakura, T.; Nakajima, H. J. Mol. Catal. 1981, 12, 359. doi: 10.1016/0304-5102(81)85040-7
-
[18]
(18) Fujitsu, H.; Takagi, T.; Mochida, I. Bull. Chem. Soc. Jpn. 1985, 58, 1589. doi: 10.1246/bcsj.58.1589
-
[19]
(19) Serhuchev, Y. O.; Bilokopytov, Y. V.; Chernobaev, I.Composition for the Vapor Phase Dehydrohalogenation of 1, 1, 2-Trihaloethane to 1, 1-Dihaloethylene and Methods for Preparingand Using Such Composition. US Patent 2008242902A1, 2008.
-
[20]
(20) Zoltanski, A.; Lach, J.; Pokorska, Z.; Halaburdo, N. Chemik. 1989, 42, 102.
-
[21]
(21) Zoltanski, A.; Lach, J.; Pokorska, Z.; Halaburdo, N.; Czelakowski, W. Przem. Chem. 1990, 69, 309.
-
[22]
(22) Wang, Y. Study on the Catalysts of the Vapor Phase CatalyticDehydrochlorination of 1, 1, 2-Trichloroethane into VinylideneChloride over Metal Halide. Master. Dissertation, East ChinaUniversity of Science and Technology, Shanghai, 2013. [王越. 1, 1, 2-三氯乙烷气相催化裂解制备偏二氯乙烯的催化剂研究[D]. 上海: 华东理工大学, 2013.]
-
[23]
(23) Jin, H. L. Technical study on Vapor Phase Catalytic 1, 1, 2-Trichloroethane into Vinylidene Chloride. Master. Dissertation, East China University of Science and Technology, Shanghai, 2010. [金海龙. 1, 1, 2-三氯乙烷气相催化裂解制偏二氯乙烯工艺研究[D]. 上海: 华东理工大学, 2010.]
-
[24]
(24) Mochida, I.; Uchino, A.; Fujitsu, H.; Takeshita, K. J. Catal. 1978, 51, 72. doi: 10.1016/0021-9517(78)90239-7
-
[25]
(25) Mochida, I.; Miyazaki, T.; Takagi, T.; Fujitsu, H. Chem. Lett. 1985, 833.
-
[26]
(26) Mochida, I.; Takagi, T.; Fujitsu, H. Appl. Catal. 1985, 18, 105. doi: 10.1016/S0166-9834(00)80302-4
-
[27]
(27) Mochida, I.; Yasumoto, Y.; Fujitsu, H.; Kojima, Y. Chem. Lett. 1992, 461.
-
[28]
(28) Mochida, I.; Yasumoto, Y.; Fujitsu, H.; Kojima, Y. Sekiyu Gakkaishi 1993, 36, 498. doi: 10.1627/jpi1958.36.498
-
[29]
(29) Feng, X.; Hu, G.; Hu, X.; Xie, G.; Xie, Y.; Lu, J.; Luo, M. Ind. Eng. Chem. Res. 2013, 52, 4221. doi: 10.1021/ie301946p
-
[30]
(30) Yan, J.; Zhang, C.; Ning, C.; Tang, Y.; Zhang, Y.; Chen, L.; Gao, S.; Wang, Z.; Zhang, W. Ind. Eng. Chem. Res. 2015, 25, 344. doi: 10.1016/j.jiec.2014.11.014
-
[31]
(31) Ruiz, M. L.; Lick, I. D.; Ponzi, M. I.; Ponzi, E. N. Catal. Commun. 2013, 34, 45. doi: 10.1016/j.catcom.2013.01.011
-
[32]
(32) Li, X. X. Initiatory & Pyrotechnic 2008, No. 1, 29. [李晓霞. 火工品, 2008, No. 1, 29.]
-
[1]
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[5]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[6]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[7]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[8]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[9]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[10]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[11]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[12]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[13]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[14]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[15]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[16]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[17]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[18]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[19]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[20]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(300)
- HTML views(8)