Citation:
LIU Xing-Rui, YAN Hui-Juan, WANG Dong, WAN Li-Jun. In situ AFM Investigation of Interfacial Morphology of Single Crystal Silicon Wafer Anode[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 283-289.
doi:
10.3866/PKU.WHXB201511132
-
The interfacial morphology of a single crystal Si wafer anode during the first discharging-charging cycle was investigated using in situ atomic force microscopy (AFM). The solid-electrolyte interphase (SEI) began to grow from 1.5 V, developing rapidly between 1.25 and 1.0 V, and slowed down after 0.6 V. The morphology suggested that the SEI had a layered structure. The outer layer of SEI was soft and easy to be scraped off during the AFM tip scanning. The underlayer of SEI had granular features. During the lithiation process, the Si surface became grainy because of the insertion of Li ions. After the first cycle, the Si surface was completely covered by inhomogeneous SEI. The thickness of the SEI was approximately 10-40 nm.
-
-
-
[1]
(1) Palacin, M. R. Chem. Soc. Rev. 2009, 38, 2565. doi: 10.1039/B820555H
-
[2]
(2) Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158. doi: 10.1149/1.2817828
-
[3]
(3) Wu, H.; Cui, Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004
-
[4]
(4) Kong, F.; Kostecki, R.; Nadeau, G.; Song, X.; Zaghib, K.; Kinoshita, K.; McLarnon, F. J. Power Sources 2001, 97, 58. doi: 10.1016/S0378-7753(01)00588-2
-
[5]
(5) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904. doi: 10.1021/nl203967r
-
[6]
(6) Szczech, J. R.; Jin, S. Energy Environ. Sci. 2011, 4, 56. doi: 10.1039/C0EE00281J
-
[7]
(7) Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. ACS Nano 2012, 6, 1522. doi: 10.1021/nn204476h
-
[8]
(8) McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y. Nano Lett. 2013, 13, 758. doi: 10.1021/nl3044508
-
[9]
(9) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Angew. Chem. Int. Edit. 2012, 51, 2409. doi: 10.1002/anie.201107885
-
[10]
(10) Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Chem. Commun. 2012, 48, 2198. doi: 10.1039/c2cc17061b
-
[11]
(11) Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. J. Mater. Chem. 2012, 22, 11014. doi: 10.1039/C2JM31286G
-
[12]
(12) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. Nano Lett. 2012, 12, 3315. doi: 10.1021/nl3014814
-
[13]
(13) Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w
-
[14]
(14) Nie, M.; Chalasani, D.; Abraham, D. P.; Chen, Y.; Bose, A.; Lucht, B. L. J. Phys. Chem. C 2013, 117, 1257. doi: 10.1021/jp3118055
-
[15]
(15) Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Chem. Mater. 2013, 25, 394. doi: 10.1021/cm303399v
-
[16]
(16) Arreaga-Salas, D. E.; Sra, A. K.; Roodenko, K.; Chabal, Y. J.; Hinkle, C. L. J. Phys. Chem. C 2012, 116, 9072. doi: 10.1021/jp300787p
-
[17]
(17) Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Chem. Commun. 2014, 50, 2104. doi: 10.1039/c3cc49029g
-
[18]
(18) Baddour-Hadjean, R.; Pereira-Ramos, J. P. Chem. Rev. 2009, 110, 1278. doi: 10.1021/cr800344k
-
[19]
(19) Li, J. T.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Accounts Chem. Res. 2012, 45, 485. doi: 10.1021/ar200215t
-
[20]
(20) Rhodes, K.; Kirkham, M.; Meisner, R.; Parish, C. M.; Dudney, N.; Daniel, C. Rev. Sci. Instrum. 2011, 82, 075107. doi: 10.1063/1.3607961
-
[21]
(21) Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Nature 2007, 446, 64. doi: 10.1038/nature05530
-
[22]
(22) Morita, S. J. Electron Microsc. 2011, 60, S199. doi: 10.1093/jmicro/dfr047
-
[23]
(23) Jeong, S. K.; Inaba, M.; Abe, T.; Ogumi, Z. J. Electrochem. Soc. 2001, 148, A989.
-
[24]
(24) Deng, X.; Liu, X.; Yan, H.; Wang, D.; Wan, L. Sci. China Chem. 2013, 57, 178. doi: 10.1007/s11426-013-4988-4
-
[25]
(25) Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. ACS Appl. Mater. Interfaces 2015, 7, 9573. doi: 10.1021/acsami.5b01024
-
[26]
(26) Demirocak, D. E.; Bhushan, B. J. Colloid Interface Sci. 2014, 423, 151. doi: 10.1016/j.jcis.2014.02.035
-
[27]
(27) Liu, X. R.; Wang, D.; Wan, L. J. Sci. Bull. 2015, 60, 839. doi: 10.1007/s11434-015-0763-6
-
[28]
(28) Domi, Y.; Ochida, M.; Tsubouchi, S.; Nakagawa, H.; Yamanaka, T.; Doi, T.; Abe, T.; Ogumi, Z. J. Phys. Chem. C 2011, 115, 25484. doi: 10.1021/jp2064672
-
[29]
(29) Liu, R. R.; Deng, X.; Liu, X. R.; Yan, H. J.; Cao, A. M.; Wang, D. Chem. Commun. 2014, 50, 15756. doi: 10.1039/C4CC07290A
-
[30]
(30) Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. J. Electrochem. Soc. 2003, 150, A1457. doi: 10.1149/1.1613668
-
[31]
(31) Martin, L.; Martinez, H.; Ulldemolins, M.; Pecquenard, B.; Le Cras, F. Solid State Ionics 2012, 215, 36. doi: 10.1016/j.ssi.2012.03.042
-
[32]
(32) He, Y.; Yu, X.; Li, G.; Wang, R.; Li, H.; Wang, Y.; Gao, H.; Huang, X. J. Power Sources 2012, 216, 131. doi: 10.1016/j.jpowsour.2012.04.105
-
[33]
(33) Becker, C. R.; Strawhecker, K. E.; McAllister, Q. P.; Lundgren, C. A. ACS Nano 2013, 7, 9173. doi: 10.1021/nn4037909
-
[34]
(34) McAllister, Q. P.; Strawhecker, K. E.; Becker, C. R.; Lundgren, C. A. J. Power Sources 2014, 257, 380. doi: 10.1016/j.jpowsour.2014.01.077
-
[35]
(35) Liu, X. R.; Deng, X.; Liu, R. R.; Yan, H. J.; Guo, Y. G.; Wang, D.; Wan, L. J. ACS Appl. Mater. Interfaces 2014, 6, 20317. doi: 10.1021/am505847s
-
[36]
(36) Zheng, J.; Zheng, H.; Wang, R.; Ben, L.; Lu, W.; Chen, L.; Li, H. Phys. Chem. Chem. Phys. 2014, 16, 13229. doi: 10.1039/c4cp01968g
-
[37]
(37) Tokranov, A.; Sheldon, B. W.; Li, C.; Minne, S.; Xiao, X. ACS Appl. Mater. Interfaces 2014, 6, 6672. doi: 10.1021/am500363t
-
[38]
(38) Gosalvez, M.; Nieminen, R. New J. Phys. 2003, 5, 100. doi: http://dx.doi.org/10.1088/1367-2630/5/1/400
-
[39]
(39) Sato, K.; Shikida, M.; Yamashiro, T.; Tsunekawa, M.; Ito, S. Sens. Actuators A 1999, 73, 122. doi: 10.1016/S0924-4247(98)00270-2
-
[40]
(40) Guzman, H. V.; Perrino, A. P.; Garcia, R. ACS Nano 2013, 7, 3198. doi: 10.1021/nn4012835
-
[41]
(41) Alsteens, D.; Dupres, V.; Yunus, S.; Latgé, J. P.; Heinisch, J. J. J.; Dufréne, Y. F. Langmuir 2012, 28, 16738. doi: 10.1021/la303891j
-
[42]
(42) Wind, R. A.; Jones, H.; Little, M. J.; Hines, M. A. J. Phys. Chem. B 2002, 106, 1557. doi: 10.1021/jp011361j
-
[43]
(43) Philipsen, H. G.; Kelly, J. J. J. Phys. Chem. B 2005, 109, 17245. doi: 10.1021/jp052595w
-
[44]
(44) Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. Nano Lett. 2014, 14, 1405. doi: 10.1021/nl404471v
-
[45]
(45) Leroy, S.; Martinez, H.; Dedryvere, R.; Lemordant, D.; Gonbeau, D. Appl. Surf. Sci. 2007, 253, 4895. doi: 10.1016/j.apsusc.2006.10.071
-
[1]
-
-
-
[1]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[2]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[3]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[4]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[5]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[6]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[7]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[8]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[9]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[10]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[11]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[12]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[13]
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
-
[14]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[15]
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
-
[16]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[17]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[18]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[19]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[20]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(438)
- HTML views(33)