Citation:
WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Physico-Chimica Sinica,
;2016, 32(2): 536-542.
doi:
10.3866/PKU.WHXB201511103
-
Rare earth (RE) and B co-doped (RE-B) nano-TiO2 photocatalysts were prepared through a sol-gel method using tetrabutyl titanate, lanthanum nitrate, cerous nitrate, and boric acid. The phase constitution, surface morphology, surface elemental compositions, light responsivity, the band gap and the composite of the electronic hole of catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and ultraviolet-visible spectroscopy (UV-Vis). The results show that all the doped products were anatase TiO2, and RE-B doping generates large lattice distortion and had the function of refining the grain, with the grain size decreasing from 27 nm (TiO2) to 10 nm (La-B-TiO2). The doped TiO2 was flake structure and piled up irregularly. Co-doping enhanced the absorption in the visible region and narrowed the band gap simultaneously. The absorption edge of La-B-TiO2 moved from 405 nm to 466 nm, and the band gap decreased 0.4 eV correspondingly. XPS results show that the doping elements have effectively doped into the titanium dioxide, and PL spectra show that the co-doping can effectively extend the life of the carrier. The photocatalytic activities of the samples were estimated by degrading methylene blue (MB) under visible and ultraviolet light irradiation for 2 h, and show much improved catalytic activity compared to un-doped TiO2. The degradation rate of MB using La/B-TiO2 was 80.67% under ultraviolet light, which is about 2.7 times that of un-doped TiO2, and 74.78 % under visible light.
-
Keywords:
- Sol-gel method,
- RE-B co-doping,
- TiO2,
- MB,
- Photo-degradation
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Akpan, U. G.; Hameed, B. H. J. Hazard. Mater. 2009, 170, 20.
-
[3]
(3) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515. doi: 10.1016/j.surfrep.2008.10.001
-
[4]
(4) Zhang, J.; Zhang, Y. P.; Lei, Y. K. Catal. Sci. Technol. 2011, 1, 273. doi: 10.1039/c0cy00051e
-
[5]
(5) Devi, L. G.; Kavitha, R. Appl. Catal. B 2013, 14-141, 559.
-
[6]
(6) Han, Z. Y.; Du, Z. M.; Zhang, Y. H.; Zhao, L. S.; Cong, X. M.J. Inorg. Mater. 2014, 29 (10), 1110.
-
[7]
(7) Zhang, H.; Zhu, H. Appl. Surf. Sci. 2012, 258, 10034. doi: 10.1016/j.apsusc.2012.06.069
-
[8]
(8) Binas, V. D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Appl. Catal. B: Environ. 2012, 113, 79.
-
[9]
(9) Wang, S.; Qian, H.; Hu, Y.; Dai, W.; Zhong, Y.; Chen, J.; Hu, X. Dalton Trans. 2013, 42, 1122. doi: 10.1039/C2DT32040A
-
[10]
(10) Qu, X. F.; Liu, L. Y.; Li, X. Q.; Du, F. L. J. Inorg. Mater. 2015, 30 (2), 183. [曲晓飞, 刘鲁英, 李雪钦, 杜芳林. 无机材料学报, 2015, 30 (2), 183.]
-
[11]
(11) Devi, L G.; Kavitha, R. RSC Adv. 2014, 4, 28265. doi: 10.1039/c4ra03291h
-
[12]
(12) Kilinc, N.; Sennik, E.; Isik, M.; Ahsen, A. S.; Ozturk, O.; Ozturk, Z. Z. Ceram. Int. 2014, 40, 109. doi: 10.1016/j.ceramint.2013.05.110
-
[13]
(13) Xiang, Q. J.; Lv, K. L.; Yu, J. G. Appl. Catal. B 2010, 96, 557. doi: 10.1016/j.apcatb.2010.03.020
-
[14]
(14) Yang, M. Q.; Zhang, N., Pagliaro, M.; Xu, Y. J. Chemical Society Reviews 2014, 43, 8240. doi: 10.1039/C4CS00213J
-
[15]
(15) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k
-
[16]
(16) Wang, R. F.; Wang, F. M.; An, S. L.; Xu, J. Y.; Zhao, J.; Zhang, Y. Rare Metal Materials and Engineering 2014, 43 (9), 2293.
-
[17]
(17) Raza, W. S.; Haque, M. M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D. J. Alloy. Compd. 2015, 632, 837. doi: 10.1016/j.jallcom.2015.01.222
-
[18]
(18) Ma, Y. F.; Zhang, J. L.; Tian, B. Z.; Chen, F.; Wang, L. Z.J. Hazard. Mater. 2010, 182, 386. doi: 10.1016/j.jhazmat.2010.06.045
-
[19]
(19) Xu, H.; Chen, W.; Wang, C.; Zhao, L. Mater. Sci. Eng. B 2012, 177, 897. doi: 10.1016/j.mseb.2012.04.002
-
[20]
(20) Xu, A.W.; Gao, Y.; Liu, H. Q. J. Catal. 2002, 207, 151. doi: 10.1006/jcat.2002.3539
-
[21]
(21) Zhang, J.; Wu, W. C.; Yan, S.; Chu, G.; Zhao, S. L.; Wang, X.; Li, C. Appl. Surf. Sci. 2015, 344, 249. doi: 10.1016/j.apsusc.2015.03.078
-
[22]
(22) Liang, C. H.; Liu, C. S.; Li, F. B.; Wu, F. Chem. Eng. J. 2009, 147, 219. doi: 10.1016/j.cej.2008.07.004
-
[23]
(23) Grujić -Brojč in, M.; Armaković , S. J.; Tomić , N.; Abramović , B.; Aleksandar, G.; Stojadinovic, B. Mater. Charact. 2014, 88, 30. doi: 10.1016/j.matchar.2013.12.002
-
[24]
(24) Fan, X.; Wan, J.; Liu, E. Z.; Sun, L.; Hu, Y.; Li, H.; Hu, X. Y.; Fan, J. Ceram. Int. B 2015, 41, 5107.
-
[25]
(25) Xue, H. S. Study on Photocatalytic Properties of Rare EarthIons Doped Titanium Dioxide Nanotubes Made by TemplateMethod. Ph. D. Dissertation, Chongqing University, Chongqing, 2008. [薛寒松. 稀土掺杂二氧化钛纳米管模板法制备及光催化性能研究[D]. 重庆: 重庆大学, 2008.]
-
[26]
(26) Zhao, S. Q.; Guo, M.; Zhang, M.; Wang, X. D.; Chang, S.Scientia Sinica Chimica 2011, 41 (11), 1699. [赵斯琴, 郭敏, 张梅, 王习东, 长山. 中国科学化学, 2011, 41(11), 1699.]
-
[27]
(27) Zhao, W.; Ma, W. H.; Chen, C. C. Journal of the American Chemical Society 2004, 126 15, 4782.
-
[28]
(28) Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Appl. Catal. B-Environ. 2015, 170-171, 153.
-
[29]
(29) Parida, K. M.; Sahu, N. J. Mol. Catal. A: Chem. 2008, 287, 151. doi: 10.1016/j.molcata.2008.02.028
-
[30]
(30) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2011, 5, 7426. doi: 10.1021/nn202519j
-
[31]
(31) Zhou, J.; Zhang, Y.; Zhao, X. Industrial & Engineering Chemistry Research 2006, 45 (10), 3503.
-
[32]
(32) Zhang, N.; Yang, M. Q.; Tang, Z. R.; Xu, Y. J. ACS Nano 2014, 8, 623.
-
[33]
(33) Qian, S.W.; Wang, Z. Y.; Wang, M. Q. Mater. Sci. Eng. 2003, 23 (1), 48. [钱斯文, 王智宇, 王民权. 材料科学与工程, 2003, 23 (1), 48.] doi: 10.1016/S0928-4931(02)00225-4
-
[34]
(34) Han, C.; Yang, M. Q.; Zhang, N.; Xu, Y. J. Journal of Materials Chemistry A 2014, 2, 19156. doi: 10.1039/C4TA04151H
-
[1]
-
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[3]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[4]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[5]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[6]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[7]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[8]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[9]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[10]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[11]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[12]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[13]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[14]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[15]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[16]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[17]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[18]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[19]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[20]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(442)
- HTML views(51)