Citation: WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 536-542. doi: 10.3866/PKU.WHXB201511103 shu

Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2

  • Corresponding author: WANG Rui-Fen, 
  • Received Date: 7 July 2015
    Available Online: 5 November 2015

    Fund Project: 国家自然科学基金(21407084) (21407084)内蒙古自然科学基金(2015MS0571) (2015MS0571)内蒙古自治区教育厅高等学校基金项目(NJZY13141)资助 (NJZY13141)

  • Rare earth (RE) and B co-doped (RE-B) nano-TiO2 photocatalysts were prepared through a sol-gel method using tetrabutyl titanate, lanthanum nitrate, cerous nitrate, and boric acid. The phase constitution, surface morphology, surface elemental compositions, light responsivity, the band gap and the composite of the electronic hole of catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and ultraviolet-visible spectroscopy (UV-Vis). The results show that all the doped products were anatase TiO2, and RE-B doping generates large lattice distortion and had the function of refining the grain, with the grain size decreasing from 27 nm (TiO2) to 10 nm (La-B-TiO2). The doped TiO2 was flake structure and piled up irregularly. Co-doping enhanced the absorption in the visible region and narrowed the band gap simultaneously. The absorption edge of La-B-TiO2 moved from 405 nm to 466 nm, and the band gap decreased 0.4 eV correspondingly. XPS results show that the doping elements have effectively doped into the titanium dioxide, and PL spectra show that the co-doping can effectively extend the life of the carrier. The photocatalytic activities of the samples were estimated by degrading methylene blue (MB) under visible and ultraviolet light irradiation for 2 h, and show much improved catalytic activity compared to un-doped TiO2. The degradation rate of MB using La/B-TiO2 was 80.67% under ultraviolet light, which is about 2.7 times that of un-doped TiO2, and 74.78 % under visible light.
  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Akpan, U. G.; Hameed, B. H. J. Hazard. Mater. 2009, 170, 20.

    3. [3]

      (3) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515. doi: 10.1016/j.surfrep.2008.10.001

    4. [4]

      (4) Zhang, J.; Zhang, Y. P.; Lei, Y. K. Catal. Sci. Technol. 2011, 1, 273. doi: 10.1039/c0cy00051e

    5. [5]

      (5) Devi, L. G.; Kavitha, R. Appl. Catal. B 2013, 14-141, 559.

    6. [6]

      (6) Han, Z. Y.; Du, Z. M.; Zhang, Y. H.; Zhao, L. S.; Cong, X. M.J. Inorg. Mater. 2014, 29 (10), 1110.

    7. [7]

      (7) Zhang, H.; Zhu, H. Appl. Surf. Sci. 2012, 258, 10034. doi: 10.1016/j.apsusc.2012.06.069

    8. [8]

      (8) Binas, V. D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Appl. Catal. B: Environ. 2012, 113, 79.

    9. [9]

      (9) Wang, S.; Qian, H.; Hu, Y.; Dai, W.; Zhong, Y.; Chen, J.; Hu, X. Dalton Trans. 2013, 42, 1122. doi: 10.1039/C2DT32040A

    10. [10]

      (10) Qu, X. F.; Liu, L. Y.; Li, X. Q.; Du, F. L. J. Inorg. Mater. 2015, 30 (2), 183. [曲晓飞, 刘鲁英, 李雪钦, 杜芳林. 无机材料学报, 2015, 30 (2), 183.]

    11. [11]

      (11) Devi, L G.; Kavitha, R. RSC Adv. 2014, 4, 28265. doi: 10.1039/c4ra03291h

    12. [12]

      (12) Kilinc, N.; Sennik, E.; Isik, M.; Ahsen, A. S.; Ozturk, O.; Ozturk, Z. Z. Ceram. Int. 2014, 40, 109. doi: 10.1016/j.ceramint.2013.05.110

    13. [13]

      (13) Xiang, Q. J.; Lv, K. L.; Yu, J. G. Appl. Catal. B 2010, 96, 557. doi: 10.1016/j.apcatb.2010.03.020

    14. [14]

      (14) Yang, M. Q.; Zhang, N., Pagliaro, M.; Xu, Y. J. Chemical Society Reviews 2014, 43, 8240. doi: 10.1039/C4CS00213J

    15. [15]

      (15) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k

    16. [16]

      (16) Wang, R. F.; Wang, F. M.; An, S. L.; Xu, J. Y.; Zhao, J.; Zhang, Y. Rare Metal Materials and Engineering 2014, 43 (9), 2293.

    17. [17]

      (17) Raza, W. S.; Haque, M. M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D. J. Alloy. Compd. 2015, 632, 837. doi: 10.1016/j.jallcom.2015.01.222

    18. [18]

      (18) Ma, Y. F.; Zhang, J. L.; Tian, B. Z.; Chen, F.; Wang, L. Z.J. Hazard. Mater. 2010, 182, 386. doi: 10.1016/j.jhazmat.2010.06.045

    19. [19]

      (19) Xu, H.; Chen, W.; Wang, C.; Zhao, L. Mater. Sci. Eng. B 2012, 177, 897. doi: 10.1016/j.mseb.2012.04.002

    20. [20]

      (20) Xu, A.W.; Gao, Y.; Liu, H. Q. J. Catal. 2002, 207, 151. doi: 10.1006/jcat.2002.3539

    21. [21]

      (21) Zhang, J.; Wu, W. C.; Yan, S.; Chu, G.; Zhao, S. L.; Wang, X.; Li, C. Appl. Surf. Sci. 2015, 344, 249. doi: 10.1016/j.apsusc.2015.03.078

    22. [22]

      (22) Liang, C. H.; Liu, C. S.; Li, F. B.; Wu, F. Chem. Eng. J. 2009, 147, 219. doi: 10.1016/j.cej.2008.07.004

    23. [23]

      (23) Grujić -Brojč in, M.; Armaković , S. J.; Tomić , N.; Abramović , B.; Aleksandar, G.; Stojadinovic, B. Mater. Charact. 2014, 88, 30. doi: 10.1016/j.matchar.2013.12.002

    24. [24]

      (24) Fan, X.; Wan, J.; Liu, E. Z.; Sun, L.; Hu, Y.; Li, H.; Hu, X. Y.; Fan, J. Ceram. Int. B 2015, 41, 5107.

    25. [25]

      (25) Xue, H. S. Study on Photocatalytic Properties of Rare EarthIons Doped Titanium Dioxide Nanotubes Made by TemplateMethod. Ph. D. Dissertation, Chongqing University, Chongqing, 2008. [薛寒松. 稀土掺杂二氧化钛纳米管模板法制备及光催化性能研究[D]. 重庆: 重庆大学, 2008.]

    26. [26]

      (26) Zhao, S. Q.; Guo, M.; Zhang, M.; Wang, X. D.; Chang, S.Scientia Sinica Chimica 2011, 41 (11), 1699. [赵斯琴, 郭敏, 张梅, 王习东, 长山. 中国科学化学, 2011, 41(11), 1699.]

    27. [27]

      (27) Zhao, W.; Ma, W. H.; Chen, C. C. Journal of the American Chemical Society 2004, 126 15, 4782.

    28. [28]

      (28) Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Appl. Catal. B-Environ. 2015, 170-171, 153.

    29. [29]

      (29) Parida, K. M.; Sahu, N. J. Mol. Catal. A: Chem. 2008, 287, 151. doi: 10.1016/j.molcata.2008.02.028

    30. [30]

      (30) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2011, 5, 7426. doi: 10.1021/nn202519j

    31. [31]

      (31) Zhou, J.; Zhang, Y.; Zhao, X. Industrial & Engineering Chemistry Research 2006, 45 (10), 3503.

    32. [32]

      (32) Zhang, N.; Yang, M. Q.; Tang, Z. R.; Xu, Y. J. ACS Nano 2014, 8, 623.

    33. [33]

      (33) Qian, S.W.; Wang, Z. Y.; Wang, M. Q. Mater. Sci. Eng. 2003, 23 (1), 48. [钱斯文, 王智宇, 王民权. 材料科学与工程, 2003, 23 (1), 48.] doi: 10.1016/S0928-4931(02)00225-4

    34. [34]

      (34) Han, C.; Yang, M. Q.; Zhang, N.; Xu, Y. J. Journal of Materials Chemistry A 2014, 2, 19156. doi: 10.1039/C4TA04151H

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(0)
  • Abstract views(357)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return