Citation: LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 61-74. doi: 10.3866/PKU.WHXB201511101
-
There has been a surge of interest in using supported gold catalysts in green synthesis and clean reactions. Complementary to their traditional platinum-group metal counterparts, catalysis using nano-gold offers a unique opportunity to obtain target products in high yields, control the chemoselectivity, and access more complex organic molecules in a compact, atom- and step-efficient way. Therefore, it has emerged as a hot topic in the field of green catalysis. This review summarizes our research progress in the area of nano-Aucatalyzed green reactions and their versatility, application in clean chemical synthesis, especially for the construction of N-containing compounds as well as valorization of biomass-derived feedstocks via goldcatalyzed transformations.
-
-
[1]
(1) Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH: Weinheim, 2007.
-
[2]
(2) Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.
-
[3]
(3) Palfray, L. Bull. Soc. Chim. Fr. 1945, 12, 692.
-
[4]
(4) Chambers, R.; Boudart, M. J. Catal. 1966, 5 (3), 517. doi: 10.1016/S0021-9517(66)80070-2
-
[5]
(5) Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc. Chem. Commun. 1973, No. 13, 444.
-
[6]
(6) Bond, G. C.; Sermon, P. A. Gold Bull. 1973, 6 (4), 102. doi: 10.1007/BF03215018
-
[7]
(7) Haruta, M.; Kohayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 2, 405.
-
[8]
(8) Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Science 2007, 318 (5857), 1757. doi: 10.1126/science.1150038
-
[9]
(9) Ueda, A.; Oshima, T.; Haruta, M. Appl. Catal. B 1997, 12 (2–3), 81. doi: 10.1016/S0926-3373(96)00069-0
-
[10]
(10) Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178 (2), 566. doi: 10.1006/jcat.1998.2157
-
[11]
(11) Mineral Commodity Summaries 2015, U.S. Geological Survey: Reston, VA, 2015.
-
[12]
(12) Butler, J. Platinum 2012 Interim Review; Johnson Matthey: Royston, U.K., 2012.
-
[13]
(13) Prati, L.; Rossi, M. J. Catal. 1998, 176 (2), 552. doi: 10.1006/jcat.1998.2078
-
[14]
(14) Biella, S.; Prati, L.; Rossi, M. J. Catal. 2002, 206 (2), 242. doi: 10.1006/jcat.2001.3497
-
[15]
(15) Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, No. 18, 2058.
-
[16]
(16) Corma, A.; Serna, P. Science 2006, 313 (5785), 332. doi: 10.1126/science.1128383
-
[17]
(17) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37 (9), 2096. doi: 10.1039/b707314n
-
[18]
(18) Stratakis, M.; Garcia, H. Chem. Rev. 2012, 112 (8), 4469. doi: 10.1021/cr3000785
-
[19]
(19) Pina, C. D.; Falletta, E.; Rossi, M. Chem. Soc. Rev. 2012, 41 (1), 350. doi: 10.1039/C1CS15089H
-
[20]
(20) Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Science 2012, 338 (6113), 1452. doi: 10.1126/science.1227813
-
[21]
(21) Wittstock, A.; Bäumer, M. Accounts Chem. Res. 2014, 47 (3), 731. doi: 10.1021/ar400202p
-
[22]
(22) Liu, X.; He, L.; Liu, Y, M.; Cao, Y. Accounts Chem. Res. 2014, 47 (3), 793. doi: 10.1021/ar400165j
-
[23]
(23) Yamazoe, S.; Koyasu, K.; Tsukuda, T. Accounts Chem. Res. 2014, 47 (3), 816. doi: 10.1021/ar400209a
-
[24]
(24) Adams, J. P.; Paterson, J. R. J. Chem. Soc., Perkin Trans. 1 2000, No. 22, 3695.
-
[25]
(25) Haber, F.; Elektrochem, Z. Angew. Phys. Chem. 1898, 22, 506.
-
[26]
(26) Kabalka, G. W.; Varma, R. S. In Comprehensive Organic Synthesis, Vol. 8; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; pp 363–388.
-
[27]
(27) He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem. Int. Edit. 2009, 48 (50), 9538. doi: 10.1002/anie.200904647
-
[28]
(28) Liu, L. Q.; Qiao, B. T.; Chen, Z. J.; Zhang, J.; Deng, Y. Q. Chem. Commun. 2009, No. 6, 653.
-
[29]
(29) Lou, X. B.; He, L.; Qian, Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. Adv. Synth. Catal. 2011, 353 (2–3), 281. doi: 10.1002/adsc.201000621
-
[30]
(30) Yu, L.; Zhang, Q.; Li, S. S.; Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y. ChemSusChem 2015, 8 (18), 3029. doi: 10.1002/cssc.201500869
-
[31]
(31) Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley: Chichester, 2007.
-
[32]
(32) Lee, K. M.; White, T. J. Polymers 2011, 3 (3), 1447.
-
[33]
(33) Cusati, T.; Granucci, G.; Persico, M. J. Am. Chem. Soc. 2011, 133 (13), 5109. doi: 10.1021/ja1113529
-
[34]
(34) Grirrane, A.; Corma, A.; García, H. Science 2008, 322 (5908), 1661. doi: 10.1126/science.1166401
-
[35]
(35) Zhang, C.; Jiao, N. Angew. Chem. Int. Edit. 2010, 49 (35), 6174. doi: 10.1002/anie.201001651
-
[36]
(36) Liu, X.; Ye, S.; Li, H. Q.; Liu, Y. M.; Cao, Y.; Fan, K. N. Catal. Sci. Technol. 2013, 3 (12), 3200. doi: 10.1039/c3cy00533j
-
[37]
(37) Liu, X.; Li, H. Q.; Ye, S.; Liu, Y. M.; He, H. Y.; Cao, Y. Angew. Chem. Int. Edit. 2014, 53 (29), 7624. doi: 10.1002/anie.201404543
-
[38]
(38) Lindlar, H. Helv. Chim. Acta 1952, 35 (2), 446.
-
[39]
(39) Jia, J.; Haraki, K.; Kondo, J. N.; Domen K.; Tamaru, K. J. Phys. Chem. B 2000, 104 (47), 11153. doi: 10.1021/jp001213d
-
[40]
(40) Segura, Y.; López, N.; Pérez-Ramírez, J. J. Catal. 2007, 247 (7), 383.
-
[41]
(41) Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L. Y.; Bao, M.; Asao, N.; Chen, M. W.; Yamamoto, Y. J. Am. Chem. Soc. 2012, 134 (42), 17536. doi: 10.1021/ja3087592
-
[42]
(42) Li, S. S.; Liu, X.; Liu, Y. M.; He, H. Y.; Fan, K. N.; Cao, Y. Chem. Commun. 2014, 50 (42), 5626. doi: 10.1039/c4cc01595a
-
[43]
(43) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987.
-
[44]
(44) Rybtchinski, B.; Cohen, R.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 2003, 125 (36), 11041. doi: 10.1021/ja029197g
-
[45]
(45) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111 (11), 7157. doi: 10.1021/cr100307m
-
[46]
(46) Garcia-Mota, M.; Gómez-Diaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. Theor. Chem. Acc. 2011, 128 (4), 663.
-
[47]
(47) Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Am. Chem. Soc. 2012, 134 (42), 17592. doi: 10.1021/ja3066978
-
[48]
(48) Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L. Y.; Bao, M.; Chen, M. W.; Asao, N.; Yamamoto, Y. Org. Lett. 2013, 15 (7), 1484. doi: 10.1021/ol400229z
-
[49]
(49) Tao, L.; Zhang, Q.; Li, S. S.; Liu, X.; Liu, Y. M.; Cao, Y. Adv. Synth. Catal. 2015, 357 (4), 753. doi: 10.1002/adsc.v357.4
-
[50]
(50) Gomez, S.; Peters, J. A.; Maschmeyer, T. Adv. Synth. Catal. 2002, 344 (10), 1037.
-
[51]
(51) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61 (11), 3849. doi: 10.1021/jo960057x
-
[52]
(52) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128 (1), 84. doi: 10.1021/ja057222n
-
[53]
(53) Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128 (40), 13074. doi: 10.1021/ja065404r
-
[54]
(54) Yamane, Y.; Liu, X. H.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunga, M. Org. Lett. 2009, 11 (22), 5162. doi: 10.1021/ol902061j
-
[55]
(55) Artiukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Zaytsev, S.Y.; Plyusnin, P. E.; Shubin, Y. V.; Bukhtiyarova, V. I. Catal. Sci. Technol. 2015, 5 (10), 4741. doi: 10.1039/C5CY00964B
-
[56]
(56) Yang, Q.; Wang, Q. F.; Yu, Z. K. Chem. Soc. Rev. 2015, 44 (8), 2305. doi: 10.1039/C4CS00496E
-
[57]
(57) Yang, H. M.; Cui, X. J; Dai, X. C.; Deng, Y. Q.; Shi, F. Nat. Commun. 2015, 6, 6478. doi: 10.1038/ncomms7478
-
[58]
(58) Shimizu, K. Catal. Sci. Technol. 2015, 5 (3), 1412. doi: 10.1039/C4CY01170H
-
[59]
(59) Tang, C. H.; He, L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem. Eur. J. 2011, 17 (26), 7172. doi: 10.1002/chem.201100393
-
[60]
(60) He, L.; Lou, X. B.; Ni, J.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem. Eur. J. 2010, 16 (47), 13965. doi: 10.1002/chem.v16.47
-
[61]
(61) Bi, Q. Y.; Du, X. L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Am. Chem. Soc. 2012, 134 (21), 8926. doi: 10.1021/ja301696e
-
[62]
(62) Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; Du, X. L.; Wang, J. Q.; He, H. Y.; Cao, Y. Angew. Chem. Int. Edit. 2015, 53 (49), 13583.
-
[63]
(63) Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. Tetrahedron Lett. 2000, 41 (47), 9149. doi: 10.1016/S0040-4039(00)01636-1
-
[64]
(64) Kulkarni, A.; Gianatassio, R.; Török, B. Synthesis 2011, No. 8, 1227.
-
[65]
(65) Yan, Z. P.; Lin, L.; Liu, S. J. Energy Fuels 2009, 23 (8), 3853. doi: 10.1021/ef900259h
-
[66]
(66) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem. Int. Edit. 2011, 123 (34), 7961. doi: 10.1002/ange.v123.34
-
[67]
(67) Du, X. L.; Bi, Q. Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. ChemSusChem 2011, 4 (12), 1838. doi: 10.1002/cssc.v4.12
-
[1]
-
-
[1]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[2]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[3]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[4]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[5]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[6]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[7]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[8]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[12]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[16]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[17]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[18]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[19]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(334)
- HTML views(28)