Citation: HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 48-60. doi: 10.3866/PKU.WHXB201511092
-
Au catalysis is representative of nanocatalysis. Au catalysis has been demonstrated to be very complex and structure-sensitive. In this short review we summarize the literature reports on Au catalysis and our recent progress on the fundamental understanding of Au catalysis using model catalysts from single crystals to nanocrystals. We demonstrate the structure-sensitivity of Au catalysis used for NO decomposition, CO oxidation, and propylene epoxidation with H2 and O2 and the corresponding active Au structures. We discuss the effects of the geometric and electronic structures and the Au-oxide support interactions on Au catalysis, and the origin of high catalytic activity of the Au surface at low temperatures. Finally, we provide an outlook for future research directions of structure-sensitive Au catalysis.
-
-
[1]
(1) Hutchings, G. J. J. Catal. 1985, 96, 292. doi: 10.1016/0021-9517(85)90383-5
-
[2]
(2) Nkosi, B.; Coville, N. J.; Hutchings, G. J. Appl. Catal. 1988, 43, 33. doi: 10.1016/S0166-9834(00)80898-2
-
[3]
(3) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
-
[4]
(4) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1
-
[5]
(5) Bond, G. C.; Thompson, D. T. Cat. Rev. Sci. Eng. 1999, 41, 319. doi: 10.1081/CR-100101171
-
[6]
(6) Haruta, M.; Daté, M. Appl. Catal. A: Gen. 2001, 222, 427. doi: 10.1016/S0926-860X(01)00847-X
-
[7]
(7) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Edit. 2006, 45, 7896.
-
[8]
(8) Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J.; Ishida, T.; Haruta, M. Adv. Catal. 2012, 55, 1.
-
[9]
(9) Ide, M. S.; Davis, R. J. Accounts Chem. Res. 2014, 47, 825. doi: 10.1021/ar4001907
-
[10]
(10) Ojeda, M.; Iglesia, E. Chem. Commun. 2009, No. 3, 352.
-
[11]
(11) Lee, S.; Molina, L. M.; López, M.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Angew. Chem. Int. Edit. 2009, 48, 1467. doi: 10.1002/anie.v48:8
-
[12]
(12) Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Angew. Chem. Int. Edit. 2009, 48, 7862. doi: 10.1002/anie.v48:42
-
[13]
(13) Fujitani, T.; Nakamura, I. Angew. Chem. Int. Edit. 2011, 50, 10144. doi: 10.1002/anie.201104694
-
[14]
(14) Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. J. Catal. 2001, 197, 113.
-
[15]
(15) Daté, M.; Okumura, M.; Tsubota, S.; Haruta, M. Angew. Chem. Int. Edit. 2004, 43, 2129.
-
[16]
(16) Costello, C. K.; Kung, M. C.; Oh, H. S.; Wang, Y.; Kung, H. H. Appl. Catal. A: Gen. 2002, 232, 159. doi: 10.1016/S0926-860X(02)00092-3
-
[17]
(17) Costello, C. K.; Yang, J. H.; Law, H. Y.; Wang, Y.; Lin, J. N.; Marks, L. D.; Kung, M. C.; Kung, H. H. Appl. Catal. A 2003, 243, 15. doi: 10.1016/S0926-860X(02)00533-1
-
[18]
(18) Kung, H. H.; Kung, M. C.; Costello, C. K. J. Catal. 2003, 216, 425. doi: 10.1016/S0021-9517(02)00111-2
-
[19]
(19) Sanchez-Castillo, M. A.; Couto, C.; Kim, W. B.; Dumesic, J. A. Angew. Chem. Int. Edit. 2004, 43, 1140.
-
[20]
(20) Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. Science 2014, 345, 1599. doi: 10.1126/science.1256018
-
[21]
(21) Anderson, J. R.; Shlmoyama, Y. In Proc. 5th Int. Congr. Catal.; Hightower, J. W. Ed.; Elsevier B. V.: North-Holland, Amsterdam, 1973; p 965.
-
[22]
(22) Boudart, M.; Aldag, A. W.; Ptak, L. D.; Benson, J. E. J. Catal. 1968, 17, 35.
-
[23]
(23) Boudart, M.; Aldag, A. W.; Benson, J. E.; Dougharty, N. A.; Harklns, G. C. J. Catal. 1966, 6, 92. doi: 10.1016/0021-9517(66)90113-8
-
[24]
(24) Dorllng, T. A.; Moss, R. L. J. Catal. 1966, 5, 111. doi: 10.1016/S0021-9517(66)80130-6
-
[25]
(25) Boudart. M. Adv. Catal. 1969, 20, 153.
-
[26]
(26) Volta. J. C.; Portefaix, J. L. Appl. Catal. 1985, 18, 1. doi: 10.1016/S0166-9834(00)80296-1
-
[27]
(27) Carberry, J. J. J. Catal. 1987, 107, 248. doi: 10.1016/0021-9517(87)90291-0
-
[28]
(28) Carberry, J. J. J. Catal. 1988, 114, 277. doi: 10.1016/0021-9517(88)90031-0
-
[29]
(29) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. doi: 10.1006/jcat.1993.1322
-
[30]
(30) Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. Catal. Lett. 1997, 44, 83. doi: 10.1023/A:1018925008633
-
[31]
(31) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. doi: 10.1126/science.281.5383.1647
-
[32]
(32) Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C. J. Catal. 2004, 222, 357. doi: 10.1016/j.jcat.2003.11.005
-
[33]
(33) Tai, Y.; Yamaguchi, W.; Tajiri, K.; Kageyama, H. Appl. Catal. A: Gen. 2009, 364, 143. doi: 10.1016/j.apcata.2009.05.041
-
[34]
(34) Laoufi, I.; Saint-Lager, M. C.; Lazzari, R.; Jupille, J.; Robach, O.; Garaudée, S.; Cabailh, G.; Dolle, P.; Cruguel, H.; Bailly, A. J. Phys. Chem. C 2011, 115, 4673. doi: 10.1021/jp1110554
-
[35]
(35) Haruta, M. Chem. Rec. 2003, 3, 75.
-
[36]
(36) Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T., Jr. Science 2011, 333, 736. doi: 10.1126/science.1207272
-
[37]
(37) Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. J. Catal. 2004, 223, 232. doi: 10.1016/j.jcat.2004.01.001
-
[38]
(38) Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Topic Catal. 2007, 44, 15. doi: 10.1007/s11244-007-0335-3
-
[39]
(39) Falsig, H.; Hvolbæk, B.; Kristensen, I. S.; Jiang, T.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. Angew. Chem. Int. Edit. 2008, 47, 4835.
-
[40]
(40) Maeda, Y.; Okumura, M.; Tsubota, S.; Kohyama, M.; Haruta, M. Appl. Surf. Sci. 2004, 222, 409. doi: 10.1016/j.apsusc.2003.09.007
-
[41]
(41) Chen, M. S.; Goodman, D. W. Science 2004, 306, 252.
-
[42]
(42) Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331. doi: 10.1126/science.1159639
-
[43]
(43) Liu, Y.; Jia, C. J.; Yamasaki, J.; Terasaki, O.; Schüth, F. Angew. Chem. Int. Edit. 2010, 49, 5771. doi: 10.1002/anie.v49:33
-
[44]
(44) Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8
-
[45]
(45) Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. J. Mol. Catal. A: Chem. 2010, 320, 97. doi: 10.1016/j.molcata.2010.01.010
-
[46]
(46) Somorjai, G. A.; Carrazza, J. Ind. Eng. Chem. Fundam. 1986, 25, 63. doi: 10.1021/i100021a009
-
[47]
(47) Parker, I. B.; Waugh, K. C.; Bowker, M. J. Catal. 1988, 114, 457. doi: 10.1016/0021-9517(88)90049-8
-
[48]
(48) Bennett, C. O.; Che, M. J. Catal. 1989, 120, 293. doi: 10.1016/0021-9517(89)90270-4
-
[49]
(49) Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Gold Bull. 2004, 37, 72. doi: 10.1007/BF03215519
-
[50]
(50) Chen, M. S.; Goodman, D. W. Accounts Chem. Res. 2006, 39, 739. doi: 10.1021/ar040309d
-
[51]
(51) Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709. doi: 10.1021/cr050954d
-
[52]
(52) Risse, T.; Shaikhutdinov, S.; Nilius, N.; Sterrer, M.; Freund, H. J. Accounts Chem. Res. 2008, 41, 949. doi: 10.1021/ar800078m
-
[53]
(53) Chen, M. S.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860. doi: 10.1039/b707318f
-
[54]
(54) Gong, J. L.; Mullins, C. B. Accounts Chem. Res. 2009, 42, 1063. doi: 10.1021/ar8002706
-
[55]
(55) Carabineiro, S. A. C.; Nieuwenhuys, B. E. Gold Bull. 2010, 43, 252. doi: 10.1007/BF03214995
-
[56]
(56) Gong, J. L. Chem. Rev. 2012, 112, 2987. doi: 10.1021/cr200041p
-
[57]
(57) Stowers, K. J.; Madix, R. J.; Friend, C. M. J. Catal. 2013, 308, 131. doi: 10.1016/j.jcat.2013.05.033
-
[58]
(58) Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 351. doi: 10.1016/0039-6028(87)90062-8
-
[59]
(59) Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Surf. Sci. 2003, 536, 206. doi: 10.1016/S0039-6028(03)00595-8
-
[60]
(60) Meier, D. C.; Bukhtiyarov, V.; Goodman, D.W. J. Phys. Chem. B 2003, 107, 12668. doi: 10.1021/jp030499u
-
[61]
(61) McElhiney, G.; Pritchard, J. Surf. Sci. 1976, 60, 397. doi: 10.1016/0039-6028(76)90324-1
-
[62]
(62) Peters, K. F.; Steadman, P.; Isern, H.; Alvarez, J.; Ferrer, S. Surf. Sci. 2000, 467, 10. doi: 10.1016/S0039-6028(00)00777-9
-
[63]
(63) Olsen, C. W.; Masel, R. I. Surf. Sci. 1988, 201, 444. doi: 10.1016/0039-6028(88)90496-7
-
[64]
(64) Canning, N. D. S.; Outka, D.; Madix, R. J. Surf. Sci. 1984, 141, 240. doi: 10.1016/0039-6028(84)90209-7
-
[65]
(65) Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 351. doi: 10.1016/0039-6028(87)90062-8
-
[1]
-
-
[1]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[2]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[3]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[4]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[5]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[14]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[15]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[16]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[17]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[18]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[19]
Yuanyi Lu , Jun Zhao , Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(477)
- HTML views(51)