Citation: ZHU Shan-Hui, WANG Jian-Guo, FAN Wei-Bin. Advances in Catalytic Hydrogenolysis of Glycerol to Fine Chemicals[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 85-97. doi: 10.3866/PKU.WHXB201511061 shu

Advances in Catalytic Hydrogenolysis of Glycerol to Fine Chemicals

  • Corresponding author: ZHU Shan-Hui,  FAN Wei-Bin, 
  • Received Date: 11 October 2015
    Available Online: 6 November 2015

    Fund Project: 国家自然科学基金(21403269,21273264) (21403269,21273264)国家重点基础研究发展规划项目(973)(2011CB201403) (973)(2011CB201403)中国科学院青年创新促进会(2015140)资助 (2015140)

  • With the rapid growth of the biodiesel industry, huge amounts of glycerol have been produced as a byproduct. Thus, it is highly desirable to convert low-cost glycerol into highly valuable chemicals, which can both expedite the development of the biodiesel process and save abundant petroleum resources. In this context, one of the most promising approaches is the catalytic hydrogenolysis of glycerol to synthesize 1,2- propanediol (1,2-PDO), 1,3-propanediol (1,3-PDO), ethylene glycol (EG), and propanols, because these target products have higher selectivity, economic value and potential for industrial application. In this paper, glycerol chemistry will be briefly introduced and then the reaction mechanisms, including dehydration-hydrogenation, dehydrogenation-dehydration-hydrogenation, direct hydrogenolysis, and ionic hydrogenation, will be discussed because of their importance for understanding the catalytic chemistry. Subsequently, the catalytic applications of glycerol hydrogenolysis to obtain 1,2-PDO, 1,3-PDO, EG, and propanols will be reviewed in detail based on various catalysts. In the end, we will provide a short summary and an outlook on the future prospects for glycerol hydrogenolysis.
  • 加载中
    1. [1]

      (1) Rahmat, N.; Abdullah, A. Z.; Mohamed, A. R. Renew. Sust. Energ. Rev. 2010, 14, 987. doi: 10.1016/j.rser.2009.11.010

    2. [2]

      (2) Bagheri, S.; Julkapli, N. M.; Yehye, W. A. Renew. Sust. Energ. Rev. 2015, 41, 113. doi: 10.1016/j.rser.2014.08.031

    3. [3]

      (3) Katryniok, B.; Paul, S.; Paul, S. B.; Dumeignil, F. ACS Catal. 2013, 3, 1819. doi: 10.1021/cs400354p

    4. [4]

      (4) Katryniok, B.; Paul, S.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 2079. doi: 10.1039/c0gc00307g

    5. [5]

      (5) Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass; U.S. Department of Energy: Springfield, 2004; Vol.1, pp 52–57.

    6. [6]

      (6) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. Angew. Chem. Int. Edit. 2007, 46, 4434.

    7. [7]

      (7) Zhou, C. H. C.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. M. Chem. Soc. Rev. 2008, 37, 527. doi: 10.1039/B707343G

    8. [8]

      (8) Ruppert, A. M.; Weinberg, K.; Palkovits, R. Angew. Chem. Int. Edit. 2012, 51, 2564. doi: 10.1002/anie.201105125

    9. [9]

      (9) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411. doi: 10.1021/cr050989d

    10. [10]

      (10) Liu, S. S.; Sun, K. Q.; Xu, B. Q. ACS Catal. 2014, 4, 2226. doi: 10.1021/cs5005568

    11. [11]

      (11) Liang, D.; Gao, J.; Sun, H.; Chen, P.; Hou, Z.; Zheng, X. Appl. Catal. B: Environ. 2011, 106, 423. doi: 10.1016/j.apcatb. 2011.05.050

    12. [12]

      (12) Tsuji, A.; Rao, K. T. V.; Nishimura, S.; Takagaki, A.; Ebitani, K. ChemSusChem 2011, 4, 542. doi: 10.1002/cssc.201000359

    13. [13]

      (13) Zhu, S.; Zhu, Y.; Hao, S.; Chen, L.; Zhang, B.; Li, Y. Catal. Lett. 2012, 142, 267. doi: 10.1007/s10562-011-0757-1

    14. [14]

      (14) Nakagawa, Y.; Tomishige, K. Catal. Sci. Technol. 2011, 1, 179. doi: 10.1039/c0cy00054j

    15. [15]

      (15) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem. Int. Edit. 2007, 46, 7164.

    16. [16]

      (16) Tao, L. Z.; Yan, B.; Liang, Y.; Xu, B. Q. Green Chem. 2013, 15, 696. doi: 10.1039/c2gc16483c

    17. [17]

      (17) Chai, S. H.; Tao, L. Z.; Yan, B.; Vedrine, J. C.; Xu, B. Q. RSC Adv. 2014, 4, 4619. doi: 10.1039/C3RA46511J

    18. [18]

      (18) Pan, W. Y.; Huang, L.; Qin, F.; Zhuang, Y.; Li, X. M.; Ma, J. X.; Shen, W.; Xu, H. L. Acta Phys. -Chim. Sin. 2015, 31, 965. [潘文雅, 黄亮, 秦枫, 庄岩, 李雪梅, 马建学, 沈伟, 徐华龙. 物理化学学报, 2015, 31, 965.] doi: 10.3866/PKU.WHXB201503024

    19. [19]

      (19) Ayoub, M.; Khayoon, M. S.; Abdullah, A. Z. Bioresour. Technol. 2012, 112, 308. doi: 10.1016/j.biortech.2012.02.103

    20. [20]

      (20) Zhu, S.; Gao, X.; Dong, F.; Zhu, Y.; Zheng, H.; Li, Y. J. Catal. 2013, 306, 155. doi: 10.1016/j.jcat.2013.06.026

    21. [21]

      (21) Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Bioresour. Technol. 2013, 130, 45. doi: 10.1016/j.biortech.2012.12.011

    22. [22]

      (22) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13. doi: 10.1039/B710561D

    23. [23]

      (23) Gao, X.; Zhu, S.; Li, Y. Catal. Commun. 2015, 62, 48. doi: 10.1016/j.catcom.2015.01.007

    24. [24]

      (24) Martin, A.; Armbruster, U.; Gandarias, I.; Arias, P. L. Eur. J. Lipid Sci. Technol. 2013, 115, 9. doi: 10.1002/ejlt.201200207

    25. [25]

      (25) Kraus, G. A. Clean-Soil Air Water 2008, 36, 648. doi: 10.1002/clen.v36:8

    26. [26]

      (26) Ten, D., Jeroen; Hanefeld, U. ChemSusChem 2011, 4, 1017. doi: 10.1002/cssc.201100162

    27. [27]

      (27) Nakagawa, Y.; Tamura, M.; Tomishige, K. J. Mater. Chem. A 2014, 2, 6688. doi: 10.1039/c3ta15384c

    28. [28]

      (28) Miyazawa, T.; Koso, S.; Kunimori, K.; Tomishige, K. Appl. Catal. A: Gen. 2007, 318, 244. doi: 10.1016/j.apcata. 2006.11.006

    29. [29]

      (29) Chaminand, J.; Djakovitch, L.; Gallezot, P.; Marion, P.; Pinel, C.; Rosier, C. Green Chem. 2004, 6, 359. doi: 10.1039/b407378a

    30. [30]

      (30) Gandarias, I.; Arias, P. L.; Requies, J.; Guemez, M. B.; Fierro, J. L. G. Appl. Catal. B: Environ. 2010, 97, 248. doi: 10.1016/j.apcatb.2010.04.008

    31. [31]

      (31) Miyazawa, T.; Koso, S.; Kunimori, K.; Tomishige, K. Appl. Catal. A: Gen. 2007, 329, 30. doi: 10.1016/j.apcata. 2007.06.019

    32. [32]

      (32) Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Xiang, X.; Hu, C.; Li, Y. Appl. Catal. B: Environ. 2013, 140–141, 60.

    33. [33]

      (33) Zhu, S.; Qiu, Y.; Zhu, Y.; Hao, S.; Zheng, H.; Li, Y. Catal. Today 2013, 212, 120. doi: 10.1016/j.cattod.2012.09.011

    34. [34]

      (34) Zhu, S.; Gao, X.; Zhu, Y.; Li, Y. J. Mol. Catal. A: Chem. 2015, 398, 391. doi: 10.1016/j.molcata.2014.12.021

    35. [35]

      (35) Zhu, S.; Gao, X.; Zhu, Y.; Cui, J.; Zheng, H.; Li, Y. Appl. Catal. B: Environ. 2014, 158–159, 391.

    36. [36]

      (36) Falcone, D. D.; Hack, J. H.; Klyushin, A. Y.; Knop-Gericke, A.; Schlögl, R.; Davis, R. J. ACS Catal. 2015, 5679.

    37. [37]

      (37) Zhu, S.; Gao, X.; Zhu, Y.; Fan, W.; Wang, J.; Li, Y. Catal. Sci. Technol. 2015, 5, 1169. doi: 10.1039/C4CY01148A

    38. [38]

      (38) Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y. J. Catal. 2013, 303, 70. doi: 10.1016/j.jcat.2013.03.018

    39. [39]

      (39) Montassier, C.; Ménézo, J. C.; Hoang, L. C.; Renaud, C.; Barbier, J. J. Mol. Catal. 1991, 70, 99. doi: 10.1016/0304-5102(91)85008-P

    40. [40]

      (40) Montassier, C.; Giraud, D.; Barbier, J. Stud. Surf. Sci. Catal.; 1988, 41, 165. doi: 10.1016/S0167-2991(09)60811-9

    41. [41]

      (41) Maris, E. P.; Davis, R. J. J. Catal. 2007, 249, 328. doi: 10.1016/j.jcat.2007.05.008

    42. [42]

      (42) Maris, E. P.; Ketchie, W. C.; Murayama, M.; Davis, R. J. J. Catal. 2007, 251, 281. doi: 10.1016/j.jcat.2007.08.007

    43. [43]

      (43) Auneau, F.; Michel, C.; Delbecq, F.; Pinel, C.; Sautet, P. Chem. Eur. J. 2011, 17, 14288. doi: 10.1002/chem.v17.50

    44. [44]

      (44) Nakagawa, Y.; Shinmi, Y.; Koso, S.; Tomishige, K. J. Catal. 2010, 272, 191. doi: 10.1016/j.jcat.2010.04.009

    45. [45]

      (45) Amada, Y.; Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Appl. Catal. B: Environ. 2011, 105, 117.

    46. [46]

      (46) Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Appl. Catal. B: Environ. 2010, 94, 318. doi: 10.1016/j.apcatb. 2009.11.021

    47. [47]

      (47) Qin, L. Z.; Song, M. J.; Chen, C. L. Green Chem. 2010, 12, 1466. doi: 10.1039/c0gc00005a

    48. [48]

      (48) Miyazawa, T.; Kusunoki, Y.; Kunimori, K.; Tomishige, K. J. Catal. 2006, 240, 213. doi: 10.1016/j.jcat.2006.03.023

    49. [49]

      (49) Wang, S.; Yin, K.; Zhang, Y.; Liu, H. ACS Catal. 2013, 3, 2112. doi: 10.1021/cs400486z

    50. [50]

      (50) Wu, Z.; Mao, Y.; Wang, X.; Zhang, M. Green Chem. 2011, 13, 1311. doi: 10.1039/c0gc00809e

    51. [51]

      (51) Furikado, I.; Miyazawa, T.; Koso, S.; Shimao, A.; Kunimori, K.; Tomishige, K. Green Chem. 2007, 9, 582. doi: 10.1039/b614253b

    52. [52]

      (52) Ma, L.; He, D. H. Catal. Today 2010, 149, 148. doi: 10.1016/j.cattod.2009.03.015

    53. [53]

      (53) Shimao, A.; Koso, S.; Ueda, N.; Shinmi, Y.; Furikado, I.; Tomishige, K. Chem. Lett. 2009, 38, 540. doi: 10.1246/cl.2009.540

    54. [54]

      (54) Ma, L.; He, D. Top. Catal. 2009, 52, 834. doi: 10.1007/s11244-009-9231-3

    55. [55]

      (55) Deng, C.; Duan, X.; Zhou, J.; Chen, D.; Zhou, X.; Yuan, W. Catal. Today 2014, 234, 208. doi: 10.1016/j.cattod.2014.02.023

    56. [56]

      (56) Deng, C.; Duan, X.; Zhou, J.; Zhou, X.; Yuan, W.; Scott, S. L. Catal. Sci. Technol. 2015, 5, 1540. doi: 10.1039/C4CY01285B

    57. [57]

      (57) Oberhauser, W.; Evangelisti, C.; Jumde, R. P.; Psaro, R.; Vizza, F.; Bevilacqua, M.; Filippi, J.; Machado, B. F.; Serp, P. J. Catal. 2015, 325, 111. doi: 10.1016/j.jcat.2015.03.003

    58. [58]

      (58) Li, B.; Wang, J.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. ACS Catal. 2011, 1, 1521. doi: 10.1021/cs200386q

    59. [59]

      (59) Ge, J.; Zeng, Z.; Liao, F.; Zheng, W.; Hong, X.; Tsang, S. C. E. Green Chem. 2013, 15, 2064. doi: 10.1039/c3gc40712h

    60. [60]

      (60) Musolino, M. G.; Scarpino, L. A.; Mauriello, F.; Pietropaolo, R. Green Chem. 2009, 11, 1511. doi: 10.1039/b915745j

    61. [61]

      (61) Musolino, M. G.; Scarpino, L. A.; Mauriello, F.; Pietropaolo, R. ChemSusChem 2011, 4, 1143. doi: 10.1002/cssc.201100063

    62. [62]

      (62) Mauriello, F.; Ariga, H.; Musolino, M. G.; Pietropaolo, R.; Takakusagi, S.; Asakura, K. Appl. Catal. B: Environ. 2015, 166&ndashndash;167, 121.

    63. [63]

      (63) Dasari, M. A.; Kiatsimkul, P. P.; Sutterlin, W. R.; Suppes, G. J. Appl. Catal. A: Gen. 2005, 281, 225. doi: 10.1016/j.apcata. 2004.11.033

    64. [64]

      (64) Liang, C. H.; Ma, Z. Q.; Ding, L.; Qiu, J. S. Catal. Lett. 2009, 130, 169. doi: 10.1007/s10562-009-9844-y

    65. [65]

      (65) Ma, Z.; Xiao, Z.; van Bokhoven, J. A.; Liang, C. J. Mater. Chem. 2010, 20, 755. doi: 10.1039/B917546F

    66. [66]

      (66) Xiao, Z.; Ma, Z.; Wang, X.; Williams, C. T.; Liang, C. Ind. Eng. Chem. Res. 2011, 50, 2031. doi: 10.1021/ie101643b

    67. [67]

      (67) Xiao, Z.; Li, C.; Xiu, J.; Wang, X.; Williams, C. T.; Liang, C. J. Mol. Catal. A: Chem. 2012, 365, 24. doi: 10.1016/j.molcata. 2012.08.004

    68. [68]

      (68) Huang, Z. W.; Cui, F.; Kang, H. X.; Chen, J.; Zhang, X. Z.; Xia, C. G. Chem. Mater. 2008, 20, 5090. doi: 10.1021/cm8006233

    69. [69]

      (69) Huang, Z.; Cui, F.; Xue, J.; Zuo, J.; Chen, J.; Xia, C. Catal. Today 2012, 183, 42. doi: 10.1016/j.cattod.2011.08.038

    70. [70]

      (70) Toupance, T.; Kermarec, M.; Lambert, J. F.; Louis, C. J. Phys. Chem. B 2002, 106, 2277. doi: 10.1021/jp013153x

    71. [71]

      (71) Grift, C. J. G.; Elberse, P. A.; Mulder, A.; Geus, J. W. Appl. Catal. 1990, 59, 275. doi: 10.1016/S0166-9834(00)82204-6

    72. [72]

      (72) Wang, S. A.; Zhang, Y. C.; Liu, H. C. Chem. Asian J. 2010, 5, 1100. doi: 10.1002/asia.200900668

    73. [73]

      (73) Wang, S.; Liu, H. C. Catal. Lett. 2007, 117, 62. doi: 10.1007/s10562-007-9106-9

    74. [74]

      (74) Bienholz, A.; Schwab, F.; Claus, P. Green Chem. 2010, 12, 290. doi: 10.1039/B914523K

    75. [75]

      (75) Bienholz, A.; Blume, R.; Knop-Gericke, A.; Girgsdies, F.; Behrens, M.; Claus, P. J. Phys. Chem. C 2010, 115, 999.

    76. [76]

      (76) Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Appl. Catal. B: Environ. 2011, 101, 431. doi: 10.1016/j.apcatb.2010.10.013

    77. [77]

      (77) Xia, S.; Nie, R.; Lu, X.; Wang, L.; Chen, P.; Hou, Z. J. Catal. 2012, 296, 1. doi: 10.1016/j.jcat.2012.08.007

    78. [78]

      (78) Xia, S.; Yuan, Z.; Wang, L.; Chen, P.; Hou, Z. Appl. Catal. A: Gen. 2011, 403, 173. doi: 10.1016/j.apcata.2011.06.026

    79. [79]

      (79) Xia, S.; Yuan, Z.; Wang, L.; Chen, P.; Hou, Z. Bioresour. Technol. 2012, 104, 814. doi: 10.1016/j.biortech.2011.11.031

    80. [80]

      (80) Xia, S.; Zheng, L.; Ning, W.; Wang, L.; Chen, P.; Hou, Z. J. Mater. Chem. A 2013, 1, 11548. doi: 10.1039/c3ta12819a

    81. [81]

      (81) Zhu, S.; Gao, X.; Zhu, Y.; Li, Y. Green Chem. 2016, doi: 10.1039/c5gc01766a.

    82. [82]

      (82) Yuan, Z. L.; Wang, J. H.; Wang, L. N.; Xie, W. H.; Chen, P.; Hou, Z. Y.; Zheng, X. M. Bioresour. Technol. 2010, 101, 7088. doi: 10.1016/j.biortech.2010.04.016

    83. [83]

      (83) Balaraju, M.; Jagadeeswaraiah, K.; Prasad, P. S. S.; Lingaiah, N. Catal. Sci. Technol. 2012, 2, 1967. doi: 10.1039/c2cy20059g

    84. [84]

      (84) Mallesham, B.; Sudarsanam, P.; Reddy, B. V. S.; Reddy, B. M. Appl. Catal. B: Environ. 2016, 181, 47. doi: 10.1016/j.apcatb. 2015.07.037

    85. [85]

      (85) Vila, F.; López Granados, M.; Ojeda, M.; Fierro, J. L. G.; Mariscal, R. Catal. Today 2012, 187, 122. doi: 10.1016/j.cattod.2011.10.037

    86. [86]

      (86) Mane, R. B.; Rode, C. V. Green Chem. 2012, 14, 2780. doi: 10.1039/c2gc35661a

    87. [87]

      (87) Sato, S.; Akiyama, M.; Inui, K.; Yokota, M. Chem. Lett. 2009, 38, 560. doi: 10.1246/cl.2009.560

    88. [88]

      (88) Akiyama, M.; Sato, S.; Takahashi, R.; Inui, K.; Yokota, M. Appl. Catal. A: Gen. 2009, 371, 60. doi: 10.1016/j.apcata. 2009.09.029

    89. [89]

      (89) Guo, L. Y.; Zhou, J. X.; Mao, J. B.; Guo, X. W.; Zhang, S. G. Appl. Catal. A: Gen. 2009, 367, 93. doi: 10.1016/j.apcata. 2009.07.040

    90. [90]

      (90) Mane, R. B.; Hengne, A. M.; Ghalwadkar, A. A.; Vijayanand, S.; Mohite, P. H.; Potdar, H. S.; Rode, C. V. Catal. Lett. 2010, 135, 141. doi: 10.1007/s10562-010-0276-5

    91. [91]

      (91) Panyad, S.; Jongpatiwut, S.; Sreethawong, T.; Rirksomboon, T.; Osuwan, S. Catal. Today 2011, 174, 59.

    92. [92]

      (92) Feng, Y.; Yin, H.; Wang, A.; Shen, L.; Yu, L.; Jiang, T. Chem. Eng. J. 2011, 168, 403. doi: 10.1016/j.cej.2011.01.049

    93. [93]

      (93) Huang, L.; Zhu, Y. L.; Zheng, H. Y.; Li, Y. W.; Zeng, Z. Y. J. Chem. Technol. Biotechnol. 2008, 83, 1670.

    94. [94]

      (94) Tan, H.; Hedhill, M. N.; Wang, Y.; Zhang, J.; Li, K.; Sioud, S.; Al-Talla, Z. A.; Amad, M. H.; Zhan, T.; Tall, O. E.; Han, Y. Catal. Sci. Technol. 2013, 3, 3360. doi: 10.1039/c3cy00661a

    95. [95]

      (95) Gandarias, I.; Requies, J.; Arias, P. L.; Armbruster, U.; Martin, A. J. Catal. 2012, 290, 79. doi: 10.1016/j.jcat.2012.03.004

    96. [96]

      (96) Gandarias, I.; Arias, P. L.; Requies, J.; El Doukkali, M.; Güemez, M. B. J. Catal. 2011, 282, 237. doi: 10.1016/j.jcat.2011.06.020

    97. [97]

      (97) Yu, W.; Xu, J.; Ma, H.; Chen, C.; Zhao, J.; Miao, H.; Song, Q. Catal. Commun. 2010, 11, 493. doi: 10.1016/j.catcom. 2009.12.009

    98. [98]

      (98) Yu, W.; Zhao, J.; Ma, H.; Miao, H.; Song, Q.; Xu, J. Appl. Catal. A: Gen. 2010, 383, 73. doi: 10.1016/j.apcata. 2010.05.023

    99. [99]

      (99) Nimlos, M. R.; Blanksby, S. J.; Qian, X.; Himmel, M. E.; Johnson, D. K. J. Phys. Chem. A 2006, 110, 6145.

    100. [100]

      (100) Kurosaka, T.; Maruyama, H.; Naribayashi, I.; Sasaki, Y. Catal. Commun. 2008, 9, 1360. doi: 10.1016/j.catcom.2007.11.034

    101. [101]

      (101) Gong, L.; Lu, Y.; Ding, Y.; Lin, R.; Li, J.; Dong, W.; Wang, T.; Chen, W. Appl. Catal. A: Gen. 2010, 390, 119. doi: 10.1016/j.apcata.2010.10.002

    102. [102]

      (102) Nakagawa, Y.; Ning, X.; Amada, Y.; Tomishige, K. Appl. Catal. A: Gen. 2012, 433–434, 128.

    103. [103]

      (103) Daniel, O. M.; DeLaRiva, A.; Kunkes, E. L.; Datye, A. K.; Dumesic, J. A.; Davis, R. J. ChemCatChem 2010, 2, 1107.
      doi: 10.1002/cctc.201000093

    104. [104]

      (104) Dam, J.; Djanashvili, K.; Kapteijn, F.; Hanefeld, U. ChemCatChem 2013, 5, 497. doi: 10.1002/cctc.201200469

    105. [105]

      (105) Arundhathi, R.; Mizugaki, T.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. ChemSusChem 2013, 6, 1345. doi: 10.1002/cssc.201300196

    106. [106]

      (106) Wang, A.; Zhang, T. Accounts Chem. Res. 2013, 46, 1377.
      doi: 10.1021/ar3002156

    107. [107]

      (107) Yin, A. Y.; Guo, X. Y.; Dai, W. L.; Fan, K. N. Green Chem. 2009, 11, 1514. doi: 10.1039/b913395j

    108. [108]

      (108) Zhu, S.; Zhu, Y.; Hao, S.; Zheng, H.; Mo, T.; Li, Y. Green Chem. 2012, 14, 2607. doi: 10.1039/c2gc35564g

    109. [109]

      (109) Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Periasamy, S.; Chary, K. V. R. Appl. Catal. A: Gen. 2015, 498, 88. doi: 10.1016/j.apcata.2015.03.025

    110. [110]

      (110) Lin, X.; Lv, Y.; Xi, Y.; Qu, Y.; Phillips, D. L.; Liu, C. Energy Fuels 2014, 28, 3345. doi: 10.1021/ef500147k

  • 加载中
    1. [1]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    18. [18]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(0)
  • Abstract views(463)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return