Citation: BU Xiao-Xue, FAN Ben-Han, WEI Jie, XING Nan-Nan, MA Xiao-Xue, GUAN Wei. Thermodynamic Properties and Predicting the Surface Tension of Pyridinium-Based Ionic Liquids of [C6py][DCA] Using a New Eötvös Equation[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 267-273. doi: 10.3866/PKU.WHXB201510303 shu

Thermodynamic Properties and Predicting the Surface Tension of Pyridinium-Based Ionic Liquids of [C6py][DCA] Using a New Eötvös Equation

  • Corresponding author: GUAN Wei, 
  • Received Date: 9 September 2015
    Available Online: 28 October 2015

    Fund Project: 国家自然科学基金(21173107) (21173107)辽宁省高等学校优秀人才支持计划(2015025)资助项目 (2015025)

  • The pyridinium-based ionic liquids [C6py][DCA] (N-hexyl-pyridinium dicyanamide) was prepared and characterized using 1H and 13C nuclear magnetic responancec (NMR) spectroscopies, Fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC). The density (ρ), surface tension (γ), and refractive indices (nD) were measured at the temperature range from 288.15 to 338.15 K. Molecular volume (Vm), energy of surface (Ea), molar polarization (Rm), and polarization coefficient of [C6py][DCA] (αp) were calculated from the experimental data. Ea, Rm, and αp were approximately temperature-independent. The concept of molar surface Gibbs free energy (gs) was conceived, for which a new Eötvös equation was derived. The gs, critical temperature (Tc), and Eötvös empirical parameter related to polarity (kE) were also obtained. The new Eötvös equation was used to predict the surface tension and the predicted values of [C6py][DCA] are in close agreement with the corresponding experimental ones.
  • 加载中
    1. [1]

      (1) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68 (4), 351.

    2. [2]

      (2) Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Green Chem. 2006, 8, 639. doi: 10.1039/b600813e

    3. [3]

      (3) Muhammad, N.; Omar, W. N.; Man, Z.; Bustam, M. A.; Rafiq, S.; Uemura, Y. Ind. Eng. Chem. Res. 2012, 51 (5), 2280. doi: 10.1021/ie2014313

    4. [4]

      (4) Rout, A.; Binnemans, K. Ind. Eng. Chem. Res. 2014, 53 (8), 6500.

    5. [5]

      (5) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. Acta Phys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝, 骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.] doi: 10.3866/PKU.WHXB201207181

    6. [6]

      (6) Wang, H.; Xu, X. Q.; Shi, J. F.; Xu, G. Acta Phys. -Chim. Sin. 2013, 29 (3), 525. [王海, 徐雪青, 史继富, 徐刚. 物理化学学报, 2013, 29 (3), 525.] doi: 10.3866/PKU.WHXB201301091

    7. [7]

      (7) Zhao, D. B.; Fei, Z. F.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126 (48), 15876. doi: 10.1021/ja0463482

    8. [8]

      (8) Yunus, N. M.; Abdul Mutalib, M. I.; Man, Z.; Bustam, M. A.; Murugesan, T. Chemical Engineering Journal 2012, 189, 94.

    9. [9]

      (9) Calvar, N.; Gomez, E.; Macedo, E. A.; Dominguez, A. Thermochimica Acta 2013, 565, 178. doi: 10.1016/j.tca.2013.05.007

    10. [10]

      (10) Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. Journal of Chemical Thermodynamics 2005, 37 (6), 559. doi: 10.1016/j.jct.2005.03.013

    11. [11]

      (11) Xu, F.; Gao, H. S.; Dong, H. F.; Wang, Z. L.; Zhang, X. P.; Ren, B. Z.; Zhang, S. J. Fluid Phase Equilibria 2014, 365, 80. doi: 10.1016/j.fluid.2013.12.020

    12. [12]

      (12) Ye, Q.; Gao, T. T.; Wan, F.; Yu, B.; Pei, X. M.; Zhou, F.; Xue, Q. J. Journal of Materials Chemistry 2012, 22 (26), 13123. doi: 10.1039/c2jm31527k

    13. [13]

      (13) Zeng, S. J.; Gao, H. S.; Zhang, X. C.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chemical Engineering Journal 2014, 251, 248. doi: 10.1016/j.cej.2014.04.040

    14. [14]

      (14) Jie, X. M.; Chau, J.; Obuskovic, G.; Obuskovic, G.; Sirkar, K. K. Industrial & Engineering Chemistry Research 2014, 53 (8), 3305. doi: 10.1021/ie403596b

    15. [15]

      (15) Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Energy & Fuels 2008, 22 (4), 2871. doi: 10.1021/ef800286b

    16. [16]

      (16) Bedrov, D.; Borodin, O. Journal of Physical Chemistry B 2010, 114 (40), 12802. doi: 10.1021/jp1049827

    17. [17]

      (17) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108 (42), 16593. doi: 10.1021/jp047480r

    18. [18]

      (18) Krossing, I.; Slattery, J. M.; Daguenet, C.; Dyson, P. J.; Oleinikova, A.; Weingärtner, H. J. Am. Chem. Soc. 2006, 128 (41), 13427.

    19. [19]

      (19) Jenkins, H. D. B.; Glasser, L. Inorganic Chemistry 2002, 41 (17), 4378. doi: 10.1021/ic020222t

    20. [20]

      (20) Jenkins, H. D. B.; Glasser, L. Inorganic Chemistry 2003, 42 (26), 8702. doi: 10.1021/ic030219p

    21. [21]

      (21) Ma, X. X.; Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan, W. Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d

    22. [22]

      (22) Wei, J.; Chang, C.; Zhang, Y. Y.; Hou, S. Y.; Fang, D. W.; Guan, W. J. Chem. Thermodynamics 2015, 90, 310.

    23. [23]

      (23) Wei, J.; Zhang, Q. B.; Tian, F.; Zheng, L.; Guan, W.; Yang, J. Z. Fluid Phase Equilibria 2014, 371, 1. doi: 10.1016/j.fluid.2014.03.011

    24. [24]

      (24) Guan, W.; Zhang, Q. B.; Ma, X. X.; Wei, J.; Pan, Y.; Yang, J. Z. Fluid Phase Equilibria 2013, 360, 63. doi: 10.1016/j.fluid.2013.09.032

    25. [25]

      (25) Ma, X. X.; Wei, J.; Guan, W.; Pan, Y.; Zheng, L.; Wu, Y.; Yang, J. Z. J. Chem. Thermodynamics 2015, 89, 51. doi: 10.1016/j.jct.2015.02.025

    26. [26]

      (26) Guan, W.; Wang, C. X.; Wang, Z.; Chen, S. P.; Gao, S. L. Acta Chim. Sin. 2011, 69 (11), 1280. [关伟, 王彩霞, 王珍, 陈三平, 高胜利. 化学学报, 2011, 69 (11), 1280.]

    27. [27]

      (27) Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T. Analytical Chemistry 2007, 79 (2), 758. doi: 10.1021/ac061481t

    28. [28]

      (28) Gordon, C. M.; Muldoon, M. J.; Wagner, M. Ionic Liquids in Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002.

    29. [29]

      (29) Zhang, S. G.; Qi, X. J.; Ma, X. Y.; Lu, L. J.; Deng, Y. Q. J. Phys. Chem. B 2010, 114 (11), 3912. doi: 10.1021/jp911430t

    30. [30]

      (30) Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, 2001.

    31. [31]

      (31) Glasser, L. Thermochimica Acta 2004, 421 (1–2), 87. doi: 10.1016/j.tca.2004.03.015

    32. [32]

      (32) Adamson, A. W. Physical Chemistry of Surfaces, 3rd ed.; John Wiley: New York, 1976; translated by Gu, T. R. Science Press: Beijing, 1986. [Adamson, A. W. 表面物理化学. 第三版. 顾惕人译. 北京: 科学出版社, 1986.]

    33. [33]

      (33) Ersfeld, B.; Felderhof, B. U. Phys. Rev. E 1998, 57 (1), 1118. doi: 10.1103/PhysRevE.57.1118

    34. [34]

      (34) Tong, J.; Liu, Q. S.; Zhang, P.; Yang, J. Z. J. Chem. Eng. Data 2007, 52 (4), 1497. doi: 10.1021/je700102g

  • 加载中
    1. [1]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    4. [4]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(1)
  • Abstract views(324)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return