Citation: LIU Shu-Bin. Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 98-118. doi: 10.3866/PKU.WHXB201510302 shu

Information-Theoretic Approach in Density Functional Reactivity Theory

  • Corresponding author: LIU Shu-Bin, 
  • Received Date: 2 October 2015
    Available Online: 29 October 2015

  • Density functional reactivity theory (DFRT) is a recent endeavor to appreciate and quantify molecular reactivity with simple density functionals. Examples of such density functionals recently investigated in the literature included Shannon entropy, Fisher information, and other quantities from information theory. This review presents an overview on the principles of the information-theoretic approach in DFRT, including the extreme physical information principle, minimum information gain principle, and information conservation principle. Three representations of this approach with electron density, shape function, and atoms-in-molecules are also summarized. Moreover, their applications in quantifying steric effect, electrophilicity, nucleophilicity, and regioselectivity are highlighted, so are the recent results in a completely new understanding about the nature and origin of ortho/para and meta group directing phenomena in electrophilic aromatic substitution reactions. A brief outlook of a few possible future developments is discussed at the end.
  • 加载中
    1. [1]

      (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.

    2. [2]

      (2) Levy, M.; Ouyang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625

    3. [3]

      (3) Herring, C.; Chopra, M. Phys. Rev. A 1988, 37, 311.

    4. [4]

      (4) Liu, S. B.; Ayers, P. W. Phys. Rev. A 2004, 70, 022501. doi: 10.1103/PhysRevA.70.022501

    5. [5]

      (5) Geerlings, P.; DeProft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    6. [6]

      (6) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f

    7. [7]

      (7) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    8. [8]

      (8) Fukui, K. Accounts Chem. Res. 1971, 4, 57. doi: 10.1021/ar50038a003

    9. [9]

      (9) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 2046. doi: 10.1021/ja01087a034

    10. [10]

      (10) Geerlings, P.; Ayers, P. W.; Toro-Labbé, A.; Chattaraj, P. K.; De Proft, F. Accounts Chem. Res. 2012, 45, 683. doi: 10.1021/ar200192t

    11. [11]

      (11) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.

    12. [12]

      (12) Johnson, E. R.; Keinan, S.; Mori-SÁnchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc 2010, 132, 6498.

    13. [13]

      (13) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879

    14. [14]

      (14) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096

    15. [15]

      (15) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247

    16. [16]

      (16) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702

    17. [17]

      (17) Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055. [周夏禹, 荣春英, 卢天, 刘述斌. 物理化学学报, 2014, 30, 2055.] doi: 10.3866/PKU.WHXB201409193

    18. [18]

      (18) Liu, S. B. J. Chem. Phys. 2014, 141, 194109. doi: 10.1063/1.4901898

    19. [19]

      (19) Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977; Phys. Chem. Chem. Phys. 2015, 17, 11110.

    20. [20]

      (20) Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443

    21. [21]

      (21) Wu, W. J.; Wu, Z. M., Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216. doi: 10.1021/acs.jpca.5b04309

    22. [22]

      (22) Wu, W. Z.; Rong, C. Y.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015,17, 27052. doi: 10.1039/C5CP04442A

    23. [23]

      (23) Nagy, Á. Int. J. Quantum Chem. 2015, 115, 1392. doi: 10.1002/qua.v115.19

    24. [24]

      (24) Nagy, Á. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002

    25. [25]

      (25) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2014, 597, 139. doi: 10.1016/j.cplett.2014.02.032

    26. [26]

      (26) Nagy, Á. Int. J. Quantum Chem. 2014, 114, 24812.

    27. [27]

      (27) Nagy, Á.; Romera, E. Chem. Phys. Lett. 2010, 490, 242. doi: 10.1016/j.cplett.2010.03.057

    28. [28]

      (28) Nagy, Á.; Romera, E. Int. J. Quantum Chem. 2009, 109, 2490. doi: 10.1002/qua.v109:11

    29. [29]

      (29) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    30. [30]

      (30) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a

    31. [31]

      (31) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r

    32. [32]

      (32) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124

    33. [33]

      (33) Burger, S. K.; Liu, S. B.; Ayers, P. W. J. Phys. Chem. A 2011, 115, 1293. doi: 10.1021/jp111148q

    34. [34]

      (34) Huang, Y.; Liu, L.; Liu, W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p

    35. [35]

      (35) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527, 73. doi: 10.1016/j.cplett.2012.01.014

    36. [36]

      (36) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d

    37. [37]

      (37) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.

    38. [38]

      (38) Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n

    39. [39]

      (39) Chattaraj, P. K.; Giri, S.; Duley, S. J. Phys. Chem. A 2012, 116, 790. doi: 10.1021/jp208541x

    40. [40]

      (40) von Szentpaly, L. J. Phys. Chem. A 2011, 115, 8528.

    41. [41]

      (41) von Szentpaly, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386

    42. [42]

      (42) von Szentpaly, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345

    43. [43]

      (43) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q

    44. [44]

      (44) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596

    45. [45]

      (45) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5

    46. [46]

      (46) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010, 133, 114110. doi: 10.1063/1.3492377

    47. [47]

      (47) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244

    48. [48]

      (48) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín, J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272

    49. [49]

      (49) Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a

    50. [50]

      (50) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008, 129, 094104. doi: 10.1063/1.2976767

    51. [51]

      (51) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f

    52. [52]

      (52) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114, 12952. doi: 10.1021/jp108577g

    53. [53]

      (53) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760

    54. [54]

      (54) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.; Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英, 苏曼, 苏文, 尹笃林, 刘述斌. 物理化学学报, 2013, 29, 43.] doi: 10.3866/PKU.WHXB201211121

    55. [55]

      (55) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015

    56. [56]

      (56) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2009, 113, 3698. doi: 10.1021/jp8096583

    57. [57]

      (57) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z

    58. [58]

      (58) Liu, S. B.; Schauer, C. K. J. Chem. Phys. 2015, 142, 054107. doi: 10.1063/1.4907365

    59. [59]

      (59) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3

    60. [60]

      (60) Sears, S. B.; Parr, R. G.; Dinur, U. Isr. J. Chem. 1980, 19, 165. doi: 10.1002/ijch.v19:1-4

    61. [61]

      (61) Sears, S. B.; Gadre, S. R. J. Chem. Phys. 1981, 75, 4626. doi: 10.1063/1.442578

    62. [62]

      (62) Romera, E.; Sanchez-Moreno, P.; Dehesa, J. S. Chem. Phys. Lett. 2005, 414, 468. doi: 10.1016/j.cplett.2005.08.032

    63. [63]

      (63) Fisher, R. A. Proc. Cambridge Philos. Soc. 1925, 22, 700. doi: 10.1017/S0305004100009580

    64. [64]

      (64) Ghosh, S. K. ; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028

    65. [65]

      (65) Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057. [刘述斌, 荣春英, 吴泽民, 卢天. 2015, 31, 2057.] doi: 10.3866/PKU.WHXB201509183

    66. [66]

      (66) Rényi, A. Probability Theory; North-Holland: Amsterdam, 1970.

    67. [67]

      (67) Tsallis, C. J. Stat. Phys. 1988, 52, 479. doi: 10.1007/BF01016429

    68. [68]

      (68) Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.

    69. [69]

      (69) Kullback, S.; Leibler, R. A. Ann. Math. Stat. 1951, 22, 79.

    70. [70]

      (70) Parr, R. G.; Bartolotti, L. J. J. Phys. Chem. 1983, 87, 2810. doi: 10.1021/j100238a023

    71. [71]

      (71) De Proft, F.; Ayers, P. W.; Sen, K. D.; Geerlings, P. J. Chem. Phys. 2004, 120, 9969. doi: 10.1063/1.1729856

    72. [72]

      (72) Ayers, P. W. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1959. doi: 10.1073/pnas.040539297

    73. [73]

      (73) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969

    74. [74]

      (74) Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem. Sect. A 2014, 53, 970.

    75. [75]

      (75) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033

    76. [76]

      (76) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

    77. [77]

      (77) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700

    78. [78]

      (78) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4

    79. [79]

      (79) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521

    80. [80]

      (80) Nagy, Á. J. Chem. Phys. 2003, 119, 9401. doi: 10.1063/1.1615765

    81. [81]

      (81) Flores, J. A.; Keller, J. Phys. Rev. A 1992, 45, 6259. doi: 10.1103/PhysRevA.45.6259

    82. [82]

      (82) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010

    83. [83]

      (83) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211

    84. [84]

      (84) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328

    85. [85]

      (85) Borgoo, A.; Teale, A. M.; Tozer, D. J. Phys. Chem. Chem. Phys. 2015, 16, 14578.

    86. [86]

      (86) Borgoo, A.; Tozer, D. J. J. Chem. Theory Comput. 2013, 9, 2250. doi: 10.1021/ct400129d

    87. [87]

      (87) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605

    88. [88]

      (88) Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107, 5406. doi: 10.1063/1.474248

    89. [89]

      (89) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041

    90. [90]

      (90) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005

    91. [91]

      (91) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.

    92. [92]

      (92) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y

    93. [93]

      (93) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5

    94. [94]

      (94) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c

    95. [95]

      (95) Crum Brown, A.; Gibson, J. J. Chem. Soc. Trans. 1892, 61, 367. doi: 10.1039/ct8926100367

    96. [96]

      (96) Solomons, T. W. G.; Fryhle, C. B.; Snydeer, S. A. Organic Chemistry; Wiley: New York, USA, 2013.

    97. [97]

      (97) Wade, L. G., Jr. Organic Chemistry; Prentice-Hall: New Jersey, USA, 2003.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return