Citation:
FENG Chang, DENG Xiao-Yan, NI Xiao-Xiao, LI Wei-Bing. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2349-2357.
doi:
10.3866/PKU.WHXB201510281
-
Porous ZnO nanorods that displayed excellent photocatalytic degradation of organic pollutants (RhB and phenol) were prepared via a solvent thermal method followed by surface modification with carbon dots (C-dots) using a deposition method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The degradation of the organic pollutants using the nanorods was tested under Xe-light illumination and was enhanced following C-dot modification. Nanorods that were modified by the C-dots at a mass fraction of 1.2% (CZn1.2) exhibited the highest photocatalytic activity for the degradation of RhB, which was 2.5 times of the pure porous ZnO nanorods. Additionally, the modified nanorods with strangely oxidation ability could catalyze the degradation of phenol by open-rings reaction under Xe-light illumination. The improved photocatalytic activity was attributed to the effective separation of the photogenerated electrons and holes, in which the C-dots served as the receptor of the photogenerated electrons.
-
-
-
[1]
(1) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
-
[2]
(2) Bu, Y. Y.; Chen, Z. Y. RSC Adv. 2014, 4, 45397. doi: 10.1039/C4RA06641C
-
[3]
(3) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G
-
[4]
(4) Xie, J.; Wang, H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27, 193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27, 193.] doi: 10.3866/PKU.WHXB20110124
-
[5]
(5) Li, D. H.; Yang, D. J.; Quan, F. Y.; Wang, B. B.; Zhang, L. J.; Zhu, S. S.; Wang, L. J. Nano Reports 2015, 1, 29.
-
[6]
(6) Liu, H.; Wu, X. F.; Li, X. Q.; Wang, J.; Fan, X. M. Chin. J. Catal. 2014, 35, 1997. [刘红, 邬小凤, 李湘奇, 王婕, 范希梅. 催化学报, 2014, 35, 1997.] doi: 10.1016/S1872-2067(14)60198-4
-
[7]
(7) Xu, F.; Sun, L. Energy Environ. Sci. 2011, 4, 818. doi: 10.1039/C0EE00448K
-
[8]
(8) Huang, J.; Yin, Z. G.; Zheng, Q. D. Energy Environ. Sci. 2011, 4, 3861. doi: 10.1039/c1ee01873f
-
[9]
(9) Shen, G.; Cho, J. H.; Yoo, J. K.; Yi, G.; Lee, C. J. J. Phys. Chem. B 2005, 109, 5491. doi: 10.1021/jp045237m
-
[10]
(10) Li, X. Q.; Fan, Q. F.; Li, G. L.; Huang, Y. H.; Gao, Z.; Fan, X. M.; Zhang, C. L.; Zhou, Z. W. Acta Phys. -Chim. Sin. 2015, 31, 783. [李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 物理化学学报, 2015, 31, 783.] doi: 10.3866/PKU.WHXB201502062
-
[11]
(11) Zhu, C. Q.; Lu, B. G.; Su, Q.; Xie, E. Q.; Lan, W. Nanoscale 2012, 4, 3060. doi: 10.1039/c2nr12010k
-
[12]
(12) Samadi, M.; Shivaee, H. A.; Zanetti, M.; Pourjavadi, A.; Moshfegh, A. J. Mol. Catal. A: Chem. 2012, 359, 42. doi: 10.1016/j.molcata.2012.03.019
-
[13]
(13) Bu, Y. Y.; Chen, Z. Y. J. Power Sources 2014, 272, 647. doi: 10.1016/j.jpowsour.2014.08.127
-
[14]
(14) Sun, X.; Li, Q.; Jiang, J. C.; Mao, Y. B. Nanoscale 2014, 6, 8769. doi: 10.1039/C4NR01146E
-
[15]
(15) Sin, J. C.; Lam, S. M.; Satoshi, I.; Lee, K. T.; Mohamed, A. R. Appl. Catal. B 2014, 148-149, 258.
-
[16]
(16) Wang, X. W.; Yin, L. C.; Liu, G.; Wang, L. Z.; Saito, R.; Lu, G. Q.; Cheng, H. M. Energy Environ. Sci. 2011, 4, 3976. doi: 10.1039/c0ee00723d
-
[17]
(17) Zhang, Y.; Lin, S.; Zhang, Y.; Song, X. M. Acta Phys. -Chim. Sin. 2013, 29, 2399. [张宇, 林申, 张钰, 宋溪明. 物理化学学报, 2013, 29, 2399.] doi: 10.3866/PKU.WHXB201309061
-
[18]
(18) Wu, L. L.; Tian, R. X.; Zhao, Q.; Chang, Q.; Hu, S. L. Chem. J. Chin. Univ. 2014, 35, 717. [武玲玲, 田瑞雪, 赵清, 常青, 胡胜亮. 高等学校化学学报, 2014, 35, 717.]
-
[19]
(19) Sun, X.; Tuo, J. Q.; Yang, W. Y.; Yang, D. J. Nano Reports 2015, 2, 51.
-
[20]
(20) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H.; Yang, X.; Lee, S. T. Angew. Chem. Int. Edit. 2010, 49, 4430. doi: 10.1002/anie.200906154
-
[21]
(21) Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H. Dalton Trans. 2012, 41, 9526. doi: 10.1039/c2dt30985h
-
[22]
(22) De, B.; Voit, B.; Karak, N. RSC Adv. 2014, 102, 58453.
-
[23]
(23) Zhang, H. C.; Huang, H.; Ming, H.; Li, H. T.; Zhang, L. L.; Liu, Y.; Kang, Z. H. J. Mater. Chem. 2012, 22, 10501. doi: 10.1039/c2jm30703k
-
[24]
(24) Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. J. Mater. Chem. 2012, 22, 24230. doi: 10.1039/c2jm34690g
-
[25]
(25) Wang, J.; Huang, H. M.; Xu, Z. Z.; Kou, J. H.; Lu, C. H. Curr. Org. Chem. 2014, 18, 1346. doi: 10.2174/1385272819666140424214022
-
[26]
(26) Yu, W. L.; Zhang, J. F.; Peng, T. Y. Appl. Catal. B 2016, 181, 220. doi: 10.1016/j.apcatb.2015.07.031
-
[27]
(27) Jassby, D.; Farner, B. J.; Wiesner, M. Environ. Sci. Technol. 2012, 46, 6934. doi: 10.1021/es202009h
-
[28]
(28) Skompska, M.; Zarę bska, K. Electrochim. Acta 2014, 127, 467. doi: 10.1016/j.electacta.2014.02.049
-
[29]
(29) Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Science 2015, 347, 970. doi: 10.1126/science.aaa3145
-
[30]
(30) Peng, Y.; Qin, S.; Wang, W. S.; Xu, A. W. CrystEngComm 2013, 15, 6518. doi: 10.1039/c3ce40798e
-
[31]
(31) Xu, Y. G.; Xu, H.; Li, H. M.; Xia, J. X.; Liu, C. T.; Liu, L. J. Alloy. Compd. 2011, 509, 3286. doi: 10.1016/j.jallcom. 2010.11.193
-
[32]
(32) Zhang, H.; Fan, X.; Quan, X.; Chen, S.; Yu, H. Environ. Sci. Technol. 2011, 45, 5731. doi: 10.1021/es2002919
-
[33]
(33) Wen, Y.; Ding, H.; Shan, Y. Nanoscale 2011, 3, 4411. doi: 10.1039/c1nr10604j
-
[34]
(34) Dong, Y. Q.; Wang, R. X.; Li, H.; Shao, J. W.; Chi, Y. W.; Lin, X. M.; Chen, G. N. Carbon 2012, 50, 2810. doi: 10.1016/j.carbon.2012.02.046
-
[35]
(35) Peng, W. Q.; Qu, S. C.; Cong, G. W.; Wang, Z. G. Cryst. Growth Des. 2006, 6, 1518. doi: 10.1021/cg0505261
-
[36]
(36) Li, Y.; Zhang, B. P.; Zhao, J. X. J. Alloy. Compd. 2014, 586, 663. doi: 10.1016/j.jallcom.2013.10.085
-
[37]
(37) Rajbongshi, B. M.; Samdarshi, S. K. Appl. Catal. B 2014, 144, 435. doi: 10.1016/j.apcatb.2013.07.048
-
[38]
(38) Yu, X. J.; Liu, J. J.; Yu, Y. C.; Zuo, S. L.; Liu, B. S. Carbon 2014, 68, 718. doi: 10.1016/j.carbon.2013.11.053
-
[39]
(39) Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G. J.; Besenbacher, F. ACS Nano 2012, 6, 6284. doi: 10.1021/nn301718v
-
[40]
(40) Xue, C.; Wang, T.; Yang, G. D.; Yang, B. L.; Ding, S. J. J. Mater. Chem. A 2014, 2, 7674. doi: 10.1039/c4ta01190b
-
[1]
-
-
-
[1]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[2]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[3]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[4]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[5]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[6]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[7]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[8]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[10]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[11]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[12]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[13]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[20]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(559)
- HTML views(84)