Citation: ZHANG Jie-Jing, WANG Yu-Xin, ZHANG Jian-Feng, XU Li. Simulation of Orientated Catalyst Layer in PEMFC Using a Microstructure Lattice Model[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2316-2323. doi: 10.3866/PKU.WHXB201510221 shu

Simulation of Orientated Catalyst Layer in PEMFC Using a Microstructure Lattice Model

  • Corresponding author: ZHANG Jie-Jing, 
  • Received Date: 27 August 2015
    Available Online: 22 October 2015

    Fund Project: 国家自然科学基金(20606025) (20606025) 吉林农业大学科研启动基金(201409) (201409)长春市科技局(2013173)资助项目 (2013173)

  • The orientated cathode in a proton exchange membrane fuel cell was simulated and compared with a random cathode using a microstructure lattice model. The differences between catalyst utilization and electrode performance were studied. Transport and electrochemical reactions in the model catalyst layer were calculated. The orientated cathode performed better than the traditional random cathode and was explained by variations of the oxygen levels, the over potential and the reaction rate across the catalyst layer with cell current density. Additionally, we examined the electrode performance at different thicknesses. Unlike the traditional random cathode, a thinner orientated cathode performed better.
  • 加载中
    1. [1]

      (1) Middelman, B. E. Fuel Cells Bulletin 2002, 9.

    2. [2]

      (2) Du, C. Y.; Cheng, X. Q.; Yang, T.; Yin, G. P.; Shi, P. F. Electrochem. Commun. 2005, 7, 1411. doi: 10.1016/j.elecom.2005.09.022

    3. [3]

      (3) Du, C. Y.; Yang, T.; Shi, P. F.; Yin, G. P.; Cheng, X. Q. Electrochim. Acta 2006, 51, 4934. doi: 10.1016/j.electacta. 2006.01.047

    4. [4]

      (4) Du, C. Y.; Yin, G. P.; Cheng, X. Q.; Shi, P. F. J. Power Sources 2006, 160, 224. doi: 10.1016/j.jpowsour.2006.01.041

    5. [5]

      (5) Du, C. Y.; Cheng, X. Q; Yin, G. P.; Shi, P. F. Journal of Chemical Industry and Engineering 2007, No. 1, 212. [杜春雨, 程新群, 尹鸽平, 史鹏飞. 化工学报, 2007, No. 1, 212.]

    6. [6]

      (6) Du, C. Y.; Shi, P. F.; Yin, G. P. Journal of Harbin Institute of Technology 2007, No. 10, 1645. [杜春雨, 史鹏飞, 尹鸽平. 哈尔滨工业大学学报, 2007, No. 10, 1645.]

    7. [7]

      (7) Chisaka, M.; Daiguji, H. Electrochem. Commun. 2006, 8, 1304. doi: 10.1016/j.elecom.2006.06.009

    8. [8]

      (8) Rao, S. M.; Xing, Y. C. J. Power Sources 2008, 185, 1094. doi: 10.1016/j.jpowsour.2008.07.062

    9. [9]

      (9) Hussain, M. M.; Song, D.; Liu, Z. S.; Xie, Z. J. Power Sources 2011, 196, 4533. doi: 10.1016/j.jpowsour.2010.10.111

    10. [10]

      (10) Wei, Z. D.; Ran, H. B.; Liu, X. A.; Liu, Y.; Sun; C. X.; Chan, S. H.; Shen, P. K. Electrochim. Acta 2006, 51, 3091.

    11. [11]

      (11) Wang, G. Q.; Mukherjee, P. P.; Wang, C. Y. Electrochim. Acta 2007, 52, 6367.

    12. [12]

      (12) Wang, G.; Mukherjee, P.; Wang, C. Electrochim. Acta 2006, 51, 3139.

    13. [13]

      (13) Wang, G. Q.; Mukherjee, P. P.; Wang, C. Y. Electrochim. Acta 2006, 51, 3151.

    14. [14]

      (14) Mukherjee, P. P.; Wang, C. Y. J. Electrochem. Soc. 2006, 153, A840.

    15. [15]

      (15) Siddique, N. A.; Liu, F. Q. Electrochim. Acta 2010, 55, 5357.

    16. [16]

      (16) Wang, H. X.; Cao, P. Z.; Wang, Y. X. Front. Chem. Eng. China 2007, 1, 146.

    17. [17]

      (17) Zhang, J. J.; Cao, P. Z.; Xu, L.; Wang, Y. X. Front. Chem. Sci. Eng. 2011, 5, 297.

    18. [18]

      (18) Zhang, J. J.; Yang, W.; Xu, L.; Wang, Y. X. Electrochim. Acta 2011, 56, 6912.

    19. [19]

      (19) Chen, Q. X.; Zhang, J. J.; Wang, Y. X. Acta Phys. -Chim. Sin. 2013, 29, 559. [陈秋香, 张洁婧, 王宇新. 物理化学学报, 2013, 29, 559.] doi: 10.3866/PKU.WHXB201301082

    20. [20]

      (20) Hattori, T.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; Carpio, C. A. D. Appl. Surf. Sci. 2008, 254, 7929. doi: 10.1016/j.apsusc.2008.03.165

    21. [21]

      (21) Kim, S. H.; Pitsch, H. J. Electrochem. Soc. 2009, 156, B673.

    22. [22]

      (22) Wu, W.; Jiang, F. M. Int. J. Hydrog. Energy 2014, 39, 15894. doi: 10.1016/j.ijhydene.2014.03.074

    23. [23]

      (23) Lange, K. J.; Sui, P. C.; Djilali, N. J. Electrochem. Soc. 2010, 157, B1434.

    24. [24]

      (24) Zhang, J. J.; Wang, Y. X.; Xu, L. Acta Phys. -Chim. Sin. 2015, 31, 489. [张洁婧, 王宇新, 许莉. 物理化学学报, 2015, 31, 489.] doi: 10.3866/PKU.WHXB201501221

    25. [25]

      (25) Ihonen, J.; Jaouen, F.; Lundblad, A.; Anders, L.; Goran, S. J. Electrochem. Soc. 2002, 149, A448.

    26. [26]

      (26) Qi, Z.; Kaufman, A. J. Power Sources 2002, 109, 227. doi: 10.1016/S0378-7753(02)00060-5

    27. [27]

      (27) Gao, Q. J.; Wang, Y. X.; Xu, L.; Wei, G. Q.; Wang, Z. T. Acta Polymerica Sinica 2009, No. 1, 45. [高启君, 王宇新, 许莉, 卫国强, 王志涛. 高分子学报, 2009, No. 1, 45.]

    28. [28]

      (28) Kulikovsky, A. A.; Divisek, J.; Kornyshev, A. A. J. Electrochem. Soc. 1999, 146, 3981.

    29. [29]

      (29) Marr, C. J. Power Sources 1999, 77, 17.

    30. [30]

      (30) Chen, F.; Chang, M. H.; Hsieh, P. T. Int. J. Hydrog. Energy 2008, 33, 2525. doi: 10.1016/j.ijhydene.2008.02.077

    31. [31]

      (31) Rao, R. M.; Rengaswamy, R. Chem. Eng. Res. Des. 2006, 84, 952.

    32. [32]

      (32) Wang, Z. T.; Wang, Y. X.; Xu, L.; Gao, Q. J.; Wei, G. Q.; Lu, J. J. Power Sources 2009, 186, 293.

    33. [33]

      (33) Cao, P. Z. Simulations of the PEMFC Catalyst Layer by Monte Carlo Method. M. S. Dissertation, Tianjin University, Tianjin, 2007. [曹鹏贞. PEMFC催化层的Monte Carlo模拟[D]. 天津: 天津大学, 2007.]

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(0)
  • Abstract views(616)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return