Citation: QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2332-2340. doi: 10.3866/PKU.WHXB201510202 shu

Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties

  • Corresponding author: WANG Yu-Qiao,  SUN Yue-Ming, 
  • Received Date: 21 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(21173042) (21173042) 国家重点基础研究发展规划项目(973) (2013CB932902) (973) (2013CB932902) 中央高校基本科研业务费(2242014K10025,3207045419) (2242014K10025,3207045419) 江苏省自然科学基金(BK20141338) (BK20141338) 江苏省工业支撑计划(BE2013118) (BE2013118) 江苏省科技成果转化专项资金(BA2014069) (BA2014069) 东南大学校级研讨课基金(1107041501) (1107041501)江苏省普通高校研究生实践创新计划项目(SJLX150047)资助 (SJLX150047)

  • P25-reduced graphene oxide nanocomposites (RGO-P25) are prepared by using a facile one-step hydrothermal method. Their structure and photoelectrical properties are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The degradation effect of different addition ratios of the RGO-P25 nanocomposite on the photocatalytic degradation of methylene blue (MB) is investigated under UV and visible illumination. Results show that graphene oxide can be reduced during the hydrothermal reaction and thus, a mixed high defect P25 particles and RGO sheet composite is formed by electrostatic attraction. Band gaps of nanocomposites decreased from 3.00 to 2.27 eV with an increase in the amount of the RGO content. The electrical conductivities of the nanocomposites enhanced with an increased RGO amount. Over 80% of the initial methylene blue dye is decomposed by 1% (w, mass fraction) RGO-P25 after 30 min under either visible light or ultraviolet light. Under UV light illumination, 63% (molar fraction) of the N3 dye, cis-Ru(H2dcbpy)2(NCS)2 (H2dcbpy = 4,4'- dicarboxy-2,2'-bipyridyl), is decomposed by the 1% RGO-P25 nanocomposite. Compared with the bare P25 (75% anatase; 25% rutile), the continual addition of RGO enhances the photocatalytic activity and gives rise to the more effective separation of photogenerated electron-hole pairs.
  • 加载中
    1. [1]

      (1) Li, D.; Chen, H. C.; Li, J. H.; Zhou, B. X.; Cai, W. M. Acta Phys. -Chim. Sin. 2011, 27 (9), 2153. [李迪, 陈红冲, 李金花, 周保学, 蔡伟民. 物理化学学报, 2011, 27 (9), 2153.] doi: 10.3866/PKU.WHXB20110910

    2. [2]

      (2) Wu, Y. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20 (7), 755. [吴玉琪, 吕功煊, 李树本. 物理化学学报, 2004, 20 (7), 755.] doi: 10.3866/PKU.WHXB20040718

    3. [3]

      (3) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S.; Tian, Z. W. Acta Phys. -Chim. Sin. 2006, 22 (10), 1238. [褚道葆, 尹晓娟, 冯德香, 林华水, 田昭武. 物理化学学报, 2006, 22 (10), 1238.] doi: 10.3866/PKU.WHXB20061013

    4. [4]

      (4) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26 (8), 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26 (8), 2261.] doi: 10.3866/PKU.WHXB20100815

    5. [5]

      (5) Wang, Y. Q.; Wang, P. P.; Lu, J.; Bai, Y. C.; Gu, Y. L.; Sun, Y. M. Acta Phys. -Chim. Sin. 2015, 31 (3), 448. [王育乔, 王盼盼, 卢静, 白一超, 顾云良, 孙岳明. 物理化学学报, 2015, 31 (3), 448.] doi: 10.3866/PKU.WHXB201412302

    6. [6]

      (6) Yu, J. H.; Fan, M. G.; Li, B.; Dong, L. H.; Zhang, F. Y. Acta Phys. -Chim. Sin. 2015, 31 (3), 519. [于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 物理化学学报, 2015, 31 (3), 519.] doi: 10.3866/PKU.WHXB201412291

    7. [7]

      (7) Liang, Y.; Wang, H.; Casalongue, H. S.; Chen Z.; Dai, H. J. Nano Research 2010, 3 (10), 701. doi: 10.1007/s12274-010-0033-5

    8. [8]

      (8) Chen, C.; Cai, W.; Long, M.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4 (11), 6425

    9. [9]

      (9) Yoo, D. H.; Cuong, T. V.; Pham, V. H.; Chuang, J. S.; Hhoa, N. T.; Kim, E. J.; Hahn, S. H. Curr. Appl. Phys. 2011, 11 (3), 805. doi: 10.1016/j.cap.2010.11.077

    10. [10]

      (10) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J. W.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29 (2), 403.] doi: 10.3866/PKU.WHXB201211022

    11. [11]

      (11) Loh, K. P.; Bao, Q.; Eda, G., Chhowalla, M. Nat. Chem. 2010, No. 2, 1015.

    12. [12]

      (12) Jahan, M.; Bao, Q.; Yang, J. X.; Loh, K. P. J. Am. Chem. Soc. 2010, 132 (41), 14487. doi: 10.1021/ja105089w

    13. [13]

      (13) Sakthive, S.; Kisch, H. Angew. Chem. -Int. Edit. 2003, 42 (40), 4908.

    14. [14]

      (14) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2 (7), 1487. doi: 10.1021/nn800251f

    15. [15]

      (15) Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, No. 20, 2801.

    16. [16]

      (16) Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Lett. 2010, 10 (3), 751. doi: 10.1021/nl904286r

    17. [17]

      (17) Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Li, M.; Wen, Y. Q.; Li, G. T. Angew. Chem. -Int. Edit. 2009, 48 (32), 5864. doi: 10.1002/anie.v48:32

    18. [18]

      (18) Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. ACS Nano 2009, 3 (8), 2367. doi: 10.1021/nn900546b

    19. [19]

      (19) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem. Mat. 2009, 21 (13), 2950. doi: 10.1021/cm9006603

    20. [20]

      (20) Zhang, H.; Lv, X. J.; Li, Y. M.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k

    21. [21]

      (21) Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhao, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li, J. H. J. Math. Chem. 2012, 22 (4), 1539. doi: 10.1039/C1JM14502A

    22. [22]

      (22) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano. 2010, 4 (12), 7303. doi: 10.1021/nn1024219

    23. [23]

      (23) Akhavan, O.; Ghaderi, E. J. Phys. Chem. C 2009, 113 (47), 20214 doi: 10.1021/jp906325q

    24. [24]

      (24) Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M. X.; Shangguan, W. F.; Ding, G. F. Int. J. Hydrog. Energy 2012, 37 (3), 2224. doi: 10.1016/j.ijhydene.2011.11.004

    25. [25]

      (25) Ren, L.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Wei, X. L.; Li, J.; Yang, L. W.; Zhong, J. X. J. Mater. Chem. 2012, 22 (23), 11765. doi: 10.1039/c2jm30457k

    26. [26]

      (26) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29 (6), 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29 (6), 1344.] doi: 10.3866/PKU.WHXB201303263

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return