Citation: QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2332-2340. doi: 10.3866/PKU.WHXB201510202
-
P25-reduced graphene oxide nanocomposites (RGO-P25) are prepared by using a facile one-step hydrothermal method. Their structure and photoelectrical properties are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The degradation effect of different addition ratios of the RGO-P25 nanocomposite on the photocatalytic degradation of methylene blue (MB) is investigated under UV and visible illumination. Results show that graphene oxide can be reduced during the hydrothermal reaction and thus, a mixed high defect P25 particles and RGO sheet composite is formed by electrostatic attraction. Band gaps of nanocomposites decreased from 3.00 to 2.27 eV with an increase in the amount of the RGO content. The electrical conductivities of the nanocomposites enhanced with an increased RGO amount. Over 80% of the initial methylene blue dye is decomposed by 1% (w, mass fraction) RGO-P25 after 30 min under either visible light or ultraviolet light. Under UV light illumination, 63% (molar fraction) of the N3 dye, cis-Ru(H2dcbpy)2(NCS)2 (H2dcbpy = 4,4'- dicarboxy-2,2'-bipyridyl), is decomposed by the 1% RGO-P25 nanocomposite. Compared with the bare P25 (75% anatase; 25% rutile), the continual addition of RGO enhances the photocatalytic activity and gives rise to the more effective separation of photogenerated electron-hole pairs.
-
Keywords:
- Graphene,
- TiO2,
- Nanocomposite,
- Hydrothermal method,
- Photocatalysis property
-
-
[1]
(1) Li, D.; Chen, H. C.; Li, J. H.; Zhou, B. X.; Cai, W. M. Acta Phys. -Chim. Sin. 2011, 27 (9), 2153. [李迪, 陈红冲, 李金花, 周保学, 蔡伟民. 物理化学学报, 2011, 27 (9), 2153.] doi: 10.3866/PKU.WHXB20110910
-
[2]
(2) Wu, Y. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20 (7), 755. [吴玉琪, 吕功煊, 李树本. 物理化学学报, 2004, 20 (7), 755.] doi: 10.3866/PKU.WHXB20040718
-
[3]
(3) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S.; Tian, Z. W. Acta Phys. -Chim. Sin. 2006, 22 (10), 1238. [褚道葆, 尹晓娟, 冯德香, 林华水, 田昭武. 物理化学学报, 2006, 22 (10), 1238.] doi: 10.3866/PKU.WHXB20061013
-
[4]
(4) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26 (8), 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26 (8), 2261.] doi: 10.3866/PKU.WHXB20100815
-
[5]
(5) Wang, Y. Q.; Wang, P. P.; Lu, J.; Bai, Y. C.; Gu, Y. L.; Sun, Y. M. Acta Phys. -Chim. Sin. 2015, 31 (3), 448. [王育乔, 王盼盼, 卢静, 白一超, 顾云良, 孙岳明. 物理化学学报, 2015, 31 (3), 448.] doi: 10.3866/PKU.WHXB201412302
-
[6]
(6) Yu, J. H.; Fan, M. G.; Li, B.; Dong, L. H.; Zhang, F. Y. Acta Phys. -Chim. Sin. 2015, 31 (3), 519. [于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 物理化学学报, 2015, 31 (3), 519.] doi: 10.3866/PKU.WHXB201412291
-
[7]
(7) Liang, Y.; Wang, H.; Casalongue, H. S.; Chen Z.; Dai, H. J. Nano Research 2010, 3 (10), 701. doi: 10.1007/s12274-010-0033-5
-
[8]
(8) Chen, C.; Cai, W.; Long, M.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4 (11), 6425
-
[9]
(9) Yoo, D. H.; Cuong, T. V.; Pham, V. H.; Chuang, J. S.; Hhoa, N. T.; Kim, E. J.; Hahn, S. H. Curr. Appl. Phys. 2011, 11 (3), 805. doi: 10.1016/j.cap.2010.11.077
-
[10]
(10) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J. W.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29 (2), 403.] doi: 10.3866/PKU.WHXB201211022
-
[11]
(11) Loh, K. P.; Bao, Q.; Eda, G., Chhowalla, M. Nat. Chem. 2010, No. 2, 1015.
-
[12]
(12) Jahan, M.; Bao, Q.; Yang, J. X.; Loh, K. P. J. Am. Chem. Soc. 2010, 132 (41), 14487. doi: 10.1021/ja105089w
-
[13]
(13) Sakthive, S.; Kisch, H. Angew. Chem. -Int. Edit. 2003, 42 (40), 4908.
-
[14]
(14) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2 (7), 1487. doi: 10.1021/nn800251f
-
[15]
(15) Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, No. 20, 2801.
-
[16]
(16) Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Lett. 2010, 10 (3), 751. doi: 10.1021/nl904286r
-
[17]
(17) Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Li, M.; Wen, Y. Q.; Li, G. T. Angew. Chem. -Int. Edit. 2009, 48 (32), 5864. doi: 10.1002/anie.v48:32
-
[18]
(18) Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. ACS Nano 2009, 3 (8), 2367. doi: 10.1021/nn900546b
-
[19]
(19) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem. Mat. 2009, 21 (13), 2950. doi: 10.1021/cm9006603
-
[20]
(20) Zhang, H.; Lv, X. J.; Li, Y. M.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k
-
[21]
(21) Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhao, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li, J. H. J. Math. Chem. 2012, 22 (4), 1539. doi: 10.1039/C1JM14502A
-
[22]
(22) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano. 2010, 4 (12), 7303. doi: 10.1021/nn1024219
-
[23]
(23) Akhavan, O.; Ghaderi, E. J. Phys. Chem. C 2009, 113 (47), 20214 doi: 10.1021/jp906325q
-
[24]
(24) Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M. X.; Shangguan, W. F.; Ding, G. F. Int. J. Hydrog. Energy 2012, 37 (3), 2224. doi: 10.1016/j.ijhydene.2011.11.004
-
[25]
(25) Ren, L.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Wei, X. L.; Li, J.; Yang, L. W.; Zhong, J. X. J. Mater. Chem. 2012, 22 (23), 11765. doi: 10.1039/c2jm30457k
-
[26]
(26) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29 (6), 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29 (6), 1344.] doi: 10.3866/PKU.WHXB201303263
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[3]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[7]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[10]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[11]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[14]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[15]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[16]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[19]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[20]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(389)
- HTML views(30)