Citation: YANG Wei, LI Xiao-Lei, WANG Chang-Sheng. Dependence of the Many-Body Interaction Strength in Water Clusters (H2O)n on the Water-Water Distance[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2285-2293. doi: 10.3866/PKU.WHXB201510191 shu

Dependence of the Many-Body Interaction Strength in Water Clusters (H2O)n on the Water-Water Distance

  • Corresponding author: WANG Chang-Sheng, 
  • Received Date: 10 August 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(21173109) (21173109) 辽宁省优秀人才基金(Lr2012037) (Lr2012037)

  • The total interaction energies and two-, three-, and four-body interaction energies of water clusters (H2O)n (n = 8, 10, 16, 20, 22, 24) are obtained from MP2/aug-cc-pVTZ calculations including the basis set superposition error (BSSE) correction. The calculation results show that the two-body interaction energies contribute more than 70% to the total interaction energy, the three-body interaction energies contribute up to 25%, the four-body interaction energies sometimes contribute up to 3%, and other many-body interaction energies always contribute less than 0.5%. It is also found that about 99.4% of the total interaction energies can be reproduced when some special two-, three-, and four-body interactions are considered. These interactions are the two-body interactions where the distance between two water molecules is less than 0.68 nm, the three-body interactions where the nearest water-water distance among three water molecules is less than 0.31 nm, and the four-body interactions where the nearest water-water distance among four water molecules is less than 0.31 nm. Our investigation results suggest that a reliable method, aimed at modeling biosystems, should possess the ability to correctly simulate these special two-, three-, and four-body interactions.
  • 加载中
    1. [1]

      (1) Xantheas, S. S. J. Chem. Phys. 1994, 100, 7523. doi: 10.1063/1.466846

    2. [2]

      (2) Xantheas, S. S. Chem. Phys. 2000, 258, 225. doi: 10.1016/S0301-0104(00)00189-0

    3. [3]

      (3) Góra, U.; Podeszwa, R.; Cencek, W.; Szalewicz, K. J. Chem. Phys. 2011, 135, 224102. doi: 10.1063/1.3664730

    4. [4]

      (4) Qi, H. W.; Leverentz, H. R.; Truhlar, D. G. J. Phys. Chem. A 2013, 117, 4486. doi: 10.1021/jp401463f

    5. [5]

      (5) Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 1342. doi: 10.1021/ct700057x

    6. [6]

      (6) Cui, J.; Liu, H.; Jordanet, K. D. J. Phys. Chem. B 2006, 110, 18872. doi: 10.1021/jp056416m

    7. [7]

      (7) Ouyang, J. F.; Cvitkovic, M. W.; Bettens, R. P. A. J. Chem. Theory Comput. 2014, 10, 3699. doi: 10.1021/ct500396b

    8. [8]

      (8) Elrodt, M. J.; Saykally, R. J. Chem. Rev. 1994, 94, 1975. doi: 10.1021/cr00031a010

    9. [9]

      (9) Lankau, T. J. Phys. Chem. A 2002, 106, 6154. doi: 10.1021/jp014206d

    10. [10]

      (10) Fedorov, D. G.; Asada, N.; Nakanishi, I.; Kitaura, K. Accounts Chem. Res. 2014, 47, 2846. doi: 10.1021/ar500224r

    11. [11]

      (11) Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 46. doi: 10.1021/ct600253j

    12. [12]

      (12) Tempkin, J. O. B.; Leverentz, H. R.; Wang, B.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 2141. doi: 10.1021/jz200893t

    13. [13]

      (13) Li, S. S.; Jiang, X. N.; Wang, C. S. Chem. J. Chin. Univ. 2014, 11, 2403. [李书实, 姜笑楠, 王长生. 高等学校化学学报, 2014, 11, 2403.]

    14. [14]

      (14) Dahlke, E. E.; Leverentz, H. R.; Truhlar, D. G. J. Chem. Theory Comput. 2008, 4, 33.

    15. [15]

      (15) Wang, F. F.; Deible, M. J.; Jordan, K. D. J. Phys. Chem. A 2013, 117, 7606. doi: 10.1021/jp404541c

    16. [16]

      (16) Richard, R. M.; Lao, K. U.; Herbert, J. M. Accoutns Chem. Res. 2014, 47, 2828. doi: 10.1021/ar500119q

    17. [17]

      (17) Medders, G. R.; Babin, V.; Paesani, F. J. Chem. Theory Comput. 2013, 9, 1103. doi: 10.1021/ct300913g

    18. [18]

      (18) Chen, W.; Gordon, M. S. J. Phys. Chem. A 1996, 100, 14316. doi: 10.1021/jp960694r

    19. [19]

      (19) Hodges, M. P.; Stone, A. J.; Xantheas, S. S. J. Phys. Chem. A 1997, 101, 9163. doi: 10.1021/jp9716851

    20. [20]

      (20) Zhang, Q.; Yang, Z. Z. Acta. Phys. -Chim. Sin. 2007, 23 (10), 1565. [张强, 杨忠志, 物理化学学报, 2007, 23 (10), 1565.] doi: 10.3866/PKU.WHXB20071014

    21. [21]

      (21) Campen, R. K.; Kubicki, J. D. J. Comput. Chem. 2010, 31, 963.

    22. [22]

      (22) Riley, K.; Hobza, P. J. Phys. Chem. A 2007, 111, 8257. doi: 10.1021/jp073358r

    23. [23]

      (23) Miliordos, E.; Xantheas, S. S. J. Chem. Phys. 2015, 142 (23), 234303. doi: 10.1063/1.4922262

    24. [24]

      (24) Yoo, S.; Aprà, E.; Zeng, X. C.; Xantheas, S. S. J. Phys. Chem. Lett. 2010, 1, 3122. doi: 10.1021/jz101245s

    25. [25]

      (25) Chi, Y. N.; Huang, K. L.; Zhang, S. W.; Cui, F. Y.; Xu, Y. Q.; Hu, C. W. Cryst. Growth Des. 2007, 7, 2449. doi: 10.1021/cg0607809

    26. [26]

      (26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2013.

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    11. [11]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    12. [12]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    15. [15]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

Metrics
  • PDF Downloads(1)
  • Abstract views(248)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return