Citation: WANG Tai-Yang, ZOU Chang-Jun, LI Dai-Xi, CHEN Zheng-Long, LIU Yuan, LI Xiao-Ke, LI Ming. Theoretical Investigation on Cyclodextrin Inclusion Complexes with Organic Phosphoric Acid as Corrosion Inhibitor[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2294-2302. doi: 10.3866/PKU.WHXB201510161 shu

Theoretical Investigation on Cyclodextrin Inclusion Complexes with Organic Phosphoric Acid as Corrosion Inhibitor

  • Corresponding author: ZOU Chang-Jun, 
  • Received Date: 19 August 2015
    Available Online: 15 October 2015

    Fund Project: 国家自然科学基金(21576225)资助项目 (21576225)

  • The adsorption properties of amino methylene phosphonic acid (A), hydroxyethylenediphosphonic acid (B), sodium phosphonobutanetricarboxylic acid (C) and their inclusions with cationic modified betacyclodextrin (HPTEA-β-CD) for mild steel are evaluated by a combination of quantum chemistry and molecular dynamics simulations. The theoretical conclusions are experimentally verified by the weight loss method. The theoretical results indicate that reaction activity sites of A, B, and C are mainly concentrated at the N, O, P atoms, and the C molecule exhibited the highest reaction activity. Molecular dynamics method presents the equilibrium adsorption behavior of three HPTEA-β-CD inclusion complexes with molecules A, B, and C on an Fe(001) surface, and molecular C-HPTEA-β-CD exhibits the best inhibition performance, according to the adsorption energy. Experimental results of the weight loss show that the three inhibitors exert an excellent corrosion inhibition performance to q235 steel, and C-HPTEA-β-CD exhibits the highest corrosion efficiency of 91.50%, which is in good accordance with theoretical results.
  • 加载中
    1. [1]

      (1) Awad, M. K.; Mustafa, M. R.; Elnga, M. M. A. J. Mol. Struc. 2010, 959, 66. doi: 10.1016/j.theochem.2010.08.008

    2. [2]

      (2) Huo, S. J.; Chen, L. H.; Zhu, Q.; Fang, J. H. Acta Phys. -Chim. Sin. 2013, 29, 2565. [霍胜娟, 陈利红, 祝卿, 方建慧. 物理化学学报, 2013, 29, 2565.] doi: 10.3866/PKU.WHXB 201310294

    3. [3]

      (3) Bentrah, H.; Rahali, Y.; Chala, A. Corrosion Sci. 2014, 82, 426. doi: 10.1016/j.corsci.2013.12.018

    4. [4]

      (4) Dö ner, A.; Kardaş , G. Corrosion Sci. 2011, 53, 4223.

    5. [5]

      (5) Tan, Y. Corrosion Sci. 2011, 53, 1145. doi: 10.1016/j.corsci.2011.01.018

    6. [6]

      (6) Satyanarayana, M. G. V.; Himabindu, V.; Kalpana, Y.; Ravi Kumar, M.; Kumar, K. J. Mol. Struc. -Theochem 2009, 912, 113. doi: 10.1016/j.theochem.2009.01.005

    7. [7]

      (7) Ö zcan, M.; Toffoli, D.; Ü stü nel, H.; Dehri, İ . Corrosion Sci. 2014, 80, 482. doi: 10.1016/j.corsci.2013.11.062

    8. [8]

      (8) Hay, B. P.; Jia, C.; Nadas, J. Comput. Theor. Chem. 2014, 1028, 72. doi: 10.1016/j.comptc.2013.12.003

    9. [9]

      (9) Evans, E. W.; George, W. O.; Platts, J. A. J. Mol. Struc. -Theochem 2005, 730, 185. doi: 10.1016/j.theochem.2005.06.026

    10. [10]

      (10) Funasaki, N.; Ishikawa, S.; Neya, S. Langmuir 2002, 18, 1786. doi: 10.1021/la0108860

    11. [11]

      (11) Duo, J.; Fletcher, H.; Stenken, J. A. Bioelectron 2006, 22, 449. doi: 10.1016/j.bios.2006.05.004

    12. [12]

      (12) Zou, C.; Zhao, P.; Lei, Y.; Ye, H.; Yao, Y.; Chen, M.; Wang, T. Chem. Eng. Technol. 2011, 34, 1820.

    13. [13]

      (13) Fan, B.; Wei, G.; Zhang, Z.; Qiao, N. Corrosion Sci. 2014, 83, 75. doi: 10.1016/j.corsci.2014.01.043

    14. [14]

      (14) Rasheed, A. Sci. Pharm. 2008, 76, 567.

    15. [15]

      (15) Na, N.; Hu, Y.; Ouyang, J.; Baeyens, W. R. G.; Delanghe, J. R.; Beer, T. D. Anal. Chim. Acta 2004, 527, 139.

    16. [16]

      (16) Sancey, B.; Trunfio, G.; Charles, J.; Badot, P. M.; Crini, G. J. Incl. Phenom. Macro. 2011, 70, 315. doi: 10.1007/s10847-010-9841-1

    17. [17]

      (17) Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. AAPS Pharm. Sci. Tech. 2005, 6, E329.

    18. [18]

      (18) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452

    19. [19]

      (19) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723

    20. [20]

      (20) Gómez, B.; Likhanova, N. V.; Aguilar, M. A. D.; Olivares, O.; Hallen, J. M.; Martínez-Magadán, J. M. J. Phys. Chem. A 2005, 109, 8950. doi: 10.1021/jp052188k

    21. [21]

      (21) Hu, S. Q.; Hu, J. C.; Fan, C. C.; Jia, X. L.; Zhang, J.; Guo, W. Y. Acta Chim. Sin. 2010, 20, 2051. [胡松青, 胡建春, 范成成, 贾晓林, 张军, 郭文跃. 化学学报, 2010, 20, 2051.]

    22. [22]

      (22) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 85-97.

    23. [23]

      (23) Maitland, G. C.; Rigby, M.; Smith, E. B. Intermolecular Forces: Their Origin and Determination; Oxford University Press: London, 1987.

    24. [24]

      (24) Tang, Y.; Yao, L.; Kong, C.; Yang, W.; Chen, Y. Corrosion Sci. 2011, 53, 2046. doi: 10.1016/j.corsci.2011.01.051

    25. [25]

      (25) Zheng, W.; Xu, J.; Huang, T.; Chen, Z.; Yang, Q. Comput. Theor. Chem. 2011, 968, 1. doi: 10.1016/j.comptc.2011.04.031

    26. [26]

      (26) Obot, I. B.; Obi-Egbedi, N. O.; Umoren, S. A. Corrosion Sci. 2009, 51, 276. doi: 10.1016/j.corsci.2008.11.013

    27. [27]

      (27) Pina, C. M.; Putnis, C. V.; Becher, U.; Biswas, S.; Caroll, E. C.; Bosbach, D.; Putnis, A. Surf. Sci. 2004, 553, 61. doi: 10.1016/j.susc.2004.01.022

    28. [28]

      (28) Fuchs-Godec, R. Colloid Surface A 2006, 280, 130. doi: 10.1016/j.colsurfa.2006.01.046

    29. [29]

      (29) Yin, K. L.; Zou, D. H.; Yang, B.; Zhang, X. H.; Xia, Q.; Xu, D. J. Computers and Applied Chemistry 2006, 12, 23. [殷开梁, 邹定辉, 杨波, 张雪红, 夏庆, 徐端钧. 计算机与应用化学, 2006, 12, 23.]

    30. [30]

      (30) Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L. Corrosion Sci. 2010, 52, 2059. doi: 10.1016/j.corsci.2010.02.018

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    4. [4]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(26)
  • Abstract views(333)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return