Citation: WANG Tai-Yang, ZOU Chang-Jun, LI Dai-Xi, CHEN Zheng-Long, LIU Yuan, LI Xiao-Ke, LI Ming. Theoretical Investigation on Cyclodextrin Inclusion Complexes with Organic Phosphoric Acid as Corrosion Inhibitor[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2294-2302. doi: 10.3866/PKU.WHXB201510161 shu

Theoretical Investigation on Cyclodextrin Inclusion Complexes with Organic Phosphoric Acid as Corrosion Inhibitor

  • Corresponding author: ZOU Chang-Jun, 
  • Received Date: 19 August 2015
    Available Online: 15 October 2015

    Fund Project: 国家自然科学基金(21576225)资助项目 (21576225)

  • The adsorption properties of amino methylene phosphonic acid (A), hydroxyethylenediphosphonic acid (B), sodium phosphonobutanetricarboxylic acid (C) and their inclusions with cationic modified betacyclodextrin (HPTEA-β-CD) for mild steel are evaluated by a combination of quantum chemistry and molecular dynamics simulations. The theoretical conclusions are experimentally verified by the weight loss method. The theoretical results indicate that reaction activity sites of A, B, and C are mainly concentrated at the N, O, P atoms, and the C molecule exhibited the highest reaction activity. Molecular dynamics method presents the equilibrium adsorption behavior of three HPTEA-β-CD inclusion complexes with molecules A, B, and C on an Fe(001) surface, and molecular C-HPTEA-β-CD exhibits the best inhibition performance, according to the adsorption energy. Experimental results of the weight loss show that the three inhibitors exert an excellent corrosion inhibition performance to q235 steel, and C-HPTEA-β-CD exhibits the highest corrosion efficiency of 91.50%, which is in good accordance with theoretical results.
  • 加载中
    1. [1]

      (1) Awad, M. K.; Mustafa, M. R.; Elnga, M. M. A. J. Mol. Struc. 2010, 959, 66. doi: 10.1016/j.theochem.2010.08.008

    2. [2]

      (2) Huo, S. J.; Chen, L. H.; Zhu, Q.; Fang, J. H. Acta Phys. -Chim. Sin. 2013, 29, 2565. [霍胜娟, 陈利红, 祝卿, 方建慧. 物理化学学报, 2013, 29, 2565.] doi: 10.3866/PKU.WHXB 201310294

    3. [3]

      (3) Bentrah, H.; Rahali, Y.; Chala, A. Corrosion Sci. 2014, 82, 426. doi: 10.1016/j.corsci.2013.12.018

    4. [4]

      (4) Dö ner, A.; Kardaş , G. Corrosion Sci. 2011, 53, 4223.

    5. [5]

      (5) Tan, Y. Corrosion Sci. 2011, 53, 1145. doi: 10.1016/j.corsci.2011.01.018

    6. [6]

      (6) Satyanarayana, M. G. V.; Himabindu, V.; Kalpana, Y.; Ravi Kumar, M.; Kumar, K. J. Mol. Struc. -Theochem 2009, 912, 113. doi: 10.1016/j.theochem.2009.01.005

    7. [7]

      (7) Ö zcan, M.; Toffoli, D.; Ü stü nel, H.; Dehri, İ . Corrosion Sci. 2014, 80, 482. doi: 10.1016/j.corsci.2013.11.062

    8. [8]

      (8) Hay, B. P.; Jia, C.; Nadas, J. Comput. Theor. Chem. 2014, 1028, 72. doi: 10.1016/j.comptc.2013.12.003

    9. [9]

      (9) Evans, E. W.; George, W. O.; Platts, J. A. J. Mol. Struc. -Theochem 2005, 730, 185. doi: 10.1016/j.theochem.2005.06.026

    10. [10]

      (10) Funasaki, N.; Ishikawa, S.; Neya, S. Langmuir 2002, 18, 1786. doi: 10.1021/la0108860

    11. [11]

      (11) Duo, J.; Fletcher, H.; Stenken, J. A. Bioelectron 2006, 22, 449. doi: 10.1016/j.bios.2006.05.004

    12. [12]

      (12) Zou, C.; Zhao, P.; Lei, Y.; Ye, H.; Yao, Y.; Chen, M.; Wang, T. Chem. Eng. Technol. 2011, 34, 1820.

    13. [13]

      (13) Fan, B.; Wei, G.; Zhang, Z.; Qiao, N. Corrosion Sci. 2014, 83, 75. doi: 10.1016/j.corsci.2014.01.043

    14. [14]

      (14) Rasheed, A. Sci. Pharm. 2008, 76, 567.

    15. [15]

      (15) Na, N.; Hu, Y.; Ouyang, J.; Baeyens, W. R. G.; Delanghe, J. R.; Beer, T. D. Anal. Chim. Acta 2004, 527, 139.

    16. [16]

      (16) Sancey, B.; Trunfio, G.; Charles, J.; Badot, P. M.; Crini, G. J. Incl. Phenom. Macro. 2011, 70, 315. doi: 10.1007/s10847-010-9841-1

    17. [17]

      (17) Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. AAPS Pharm. Sci. Tech. 2005, 6, E329.

    18. [18]

      (18) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452

    19. [19]

      (19) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723

    20. [20]

      (20) Gómez, B.; Likhanova, N. V.; Aguilar, M. A. D.; Olivares, O.; Hallen, J. M.; Martínez-Magadán, J. M. J. Phys. Chem. A 2005, 109, 8950. doi: 10.1021/jp052188k

    21. [21]

      (21) Hu, S. Q.; Hu, J. C.; Fan, C. C.; Jia, X. L.; Zhang, J.; Guo, W. Y. Acta Chim. Sin. 2010, 20, 2051. [胡松青, 胡建春, 范成成, 贾晓林, 张军, 郭文跃. 化学学报, 2010, 20, 2051.]

    22. [22]

      (22) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 85-97.

    23. [23]

      (23) Maitland, G. C.; Rigby, M.; Smith, E. B. Intermolecular Forces: Their Origin and Determination; Oxford University Press: London, 1987.

    24. [24]

      (24) Tang, Y.; Yao, L.; Kong, C.; Yang, W.; Chen, Y. Corrosion Sci. 2011, 53, 2046. doi: 10.1016/j.corsci.2011.01.051

    25. [25]

      (25) Zheng, W.; Xu, J.; Huang, T.; Chen, Z.; Yang, Q. Comput. Theor. Chem. 2011, 968, 1. doi: 10.1016/j.comptc.2011.04.031

    26. [26]

      (26) Obot, I. B.; Obi-Egbedi, N. O.; Umoren, S. A. Corrosion Sci. 2009, 51, 276. doi: 10.1016/j.corsci.2008.11.013

    27. [27]

      (27) Pina, C. M.; Putnis, C. V.; Becher, U.; Biswas, S.; Caroll, E. C.; Bosbach, D.; Putnis, A. Surf. Sci. 2004, 553, 61. doi: 10.1016/j.susc.2004.01.022

    28. [28]

      (28) Fuchs-Godec, R. Colloid Surface A 2006, 280, 130. doi: 10.1016/j.colsurfa.2006.01.046

    29. [29]

      (29) Yin, K. L.; Zou, D. H.; Yang, B.; Zhang, X. H.; Xia, Q.; Xu, D. J. Computers and Applied Chemistry 2006, 12, 23. [殷开梁, 邹定辉, 杨波, 张雪红, 夏庆, 徐端钧. 计算机与应用化学, 2006, 12, 23.]

    30. [30]

      (30) Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L. Corrosion Sci. 2010, 52, 2059. doi: 10.1016/j.corsci.2010.02.018

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    4. [4]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    5. [5]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    6. [6]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    19. [19]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(26)
  • Abstract views(380)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return