Citation:
WANG Tai-Yang, ZOU Chang-Jun, LI Dai-Xi, CHEN Zheng-Long, LIU Yuan, LI Xiao-Ke, LI Ming. Theoretical Investigation on Cyclodextrin Inclusion Complexes with Organic Phosphoric Acid as Corrosion Inhibitor[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2294-2302.
doi:
10.3866/PKU.WHXB201510161
-
The adsorption properties of amino methylene phosphonic acid (A), hydroxyethylenediphosphonic acid (B), sodium phosphonobutanetricarboxylic acid (C) and their inclusions with cationic modified betacyclodextrin (HPTEA-β-CD) for mild steel are evaluated by a combination of quantum chemistry and molecular dynamics simulations. The theoretical conclusions are experimentally verified by the weight loss method. The theoretical results indicate that reaction activity sites of A, B, and C are mainly concentrated at the N, O, P atoms, and the C molecule exhibited the highest reaction activity. Molecular dynamics method presents the equilibrium adsorption behavior of three HPTEA-β-CD inclusion complexes with molecules A, B, and C on an Fe(001) surface, and molecular C-HPTEA-β-CD exhibits the best inhibition performance, according to the adsorption energy. Experimental results of the weight loss show that the three inhibitors exert an excellent corrosion inhibition performance to q235 steel, and C-HPTEA-β-CD exhibits the highest corrosion efficiency of 91.50%, which is in good accordance with theoretical results.
-
-
-
[1]
(1) Awad, M. K.; Mustafa, M. R.; Elnga, M. M. A. J. Mol. Struc. 2010, 959, 66. doi: 10.1016/j.theochem.2010.08.008
-
[2]
(2) Huo, S. J.; Chen, L. H.; Zhu, Q.; Fang, J. H. Acta Phys. -Chim. Sin. 2013, 29, 2565. [霍胜娟, 陈利红, 祝卿, 方建慧. 物理化学学报, 2013, 29, 2565.] doi: 10.3866/PKU.WHXB 201310294
-
[3]
(3) Bentrah, H.; Rahali, Y.; Chala, A. Corrosion Sci. 2014, 82, 426. doi: 10.1016/j.corsci.2013.12.018
-
[4]
(4) Dö ner, A.; Kardaş , G. Corrosion Sci. 2011, 53, 4223.
-
[5]
(5) Tan, Y. Corrosion Sci. 2011, 53, 1145. doi: 10.1016/j.corsci.2011.01.018
-
[6]
(6) Satyanarayana, M. G. V.; Himabindu, V.; Kalpana, Y.; Ravi Kumar, M.; Kumar, K. J. Mol. Struc. -Theochem 2009, 912, 113. doi: 10.1016/j.theochem.2009.01.005
-
[7]
(7) Ö zcan, M.; Toffoli, D.; Ü stü nel, H.; Dehri, İ . Corrosion Sci. 2014, 80, 482. doi: 10.1016/j.corsci.2013.11.062
-
[8]
(8) Hay, B. P.; Jia, C.; Nadas, J. Comput. Theor. Chem. 2014, 1028, 72. doi: 10.1016/j.comptc.2013.12.003
-
[9]
(9) Evans, E. W.; George, W. O.; Platts, J. A. J. Mol. Struc. -Theochem 2005, 730, 185. doi: 10.1016/j.theochem.2005.06.026
-
[10]
(10) Funasaki, N.; Ishikawa, S.; Neya, S. Langmuir 2002, 18, 1786. doi: 10.1021/la0108860
-
[11]
(11) Duo, J.; Fletcher, H.; Stenken, J. A. Bioelectron 2006, 22, 449. doi: 10.1016/j.bios.2006.05.004
-
[12]
(12) Zou, C.; Zhao, P.; Lei, Y.; Ye, H.; Yao, Y.; Chen, M.; Wang, T. Chem. Eng. Technol. 2011, 34, 1820.
-
[13]
(13) Fan, B.; Wei, G.; Zhang, Z.; Qiao, N. Corrosion Sci. 2014, 83, 75. doi: 10.1016/j.corsci.2014.01.043
-
[14]
(14) Rasheed, A. Sci. Pharm. 2008, 76, 567.
-
[15]
(15) Na, N.; Hu, Y.; Ouyang, J.; Baeyens, W. R. G.; Delanghe, J. R.; Beer, T. D. Anal. Chim. Acta 2004, 527, 139.
-
[16]
(16) Sancey, B.; Trunfio, G.; Charles, J.; Badot, P. M.; Crini, G. J. Incl. Phenom. Macro. 2011, 70, 315. doi: 10.1007/s10847-010-9841-1
-
[17]
(17) Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. AAPS Pharm. Sci. Tech. 2005, 6, E329.
-
[18]
(18) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[19]
(19) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
-
[20]
(20) Gómez, B.; Likhanova, N. V.; Aguilar, M. A. D.; Olivares, O.; Hallen, J. M.; Martínez-Magadán, J. M. J. Phys. Chem. A 2005, 109, 8950. doi: 10.1021/jp052188k
-
[21]
(21) Hu, S. Q.; Hu, J. C.; Fan, C. C.; Jia, X. L.; Zhang, J.; Guo, W. Y. Acta Chim. Sin. 2010, 20, 2051. [胡松青, 胡建春, 范成成, 贾晓林, 张军, 郭文跃. 化学学报, 2010, 20, 2051.]
-
[22]
(22) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 85-97.
-
[23]
(23) Maitland, G. C.; Rigby, M.; Smith, E. B. Intermolecular Forces: Their Origin and Determination; Oxford University Press: London, 1987.
-
[24]
(24) Tang, Y.; Yao, L.; Kong, C.; Yang, W.; Chen, Y. Corrosion Sci. 2011, 53, 2046. doi: 10.1016/j.corsci.2011.01.051
-
[25]
(25) Zheng, W.; Xu, J.; Huang, T.; Chen, Z.; Yang, Q. Comput. Theor. Chem. 2011, 968, 1. doi: 10.1016/j.comptc.2011.04.031
-
[26]
(26) Obot, I. B.; Obi-Egbedi, N. O.; Umoren, S. A. Corrosion Sci. 2009, 51, 276. doi: 10.1016/j.corsci.2008.11.013
-
[27]
(27) Pina, C. M.; Putnis, C. V.; Becher, U.; Biswas, S.; Caroll, E. C.; Bosbach, D.; Putnis, A. Surf. Sci. 2004, 553, 61. doi: 10.1016/j.susc.2004.01.022
-
[28]
(28) Fuchs-Godec, R. Colloid Surface A 2006, 280, 130. doi: 10.1016/j.colsurfa.2006.01.046
-
[29]
(29) Yin, K. L.; Zou, D. H.; Yang, B.; Zhang, X. H.; Xia, Q.; Xu, D. J. Computers and Applied Chemistry 2006, 12, 23. [殷开梁, 邹定辉, 杨波, 张雪红, 夏庆, 徐端钧. 计算机与应用化学, 2006, 12, 23.]
-
[30]
(30) Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L. Corrosion Sci. 2010, 52, 2059. doi: 10.1016/j.corsci.2010.02.018
-
[1]
-
-
-
[1]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[2]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[3]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[4]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[5]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[6]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[7]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[8]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[9]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[13]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[14]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
-
[18]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[19]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[20]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[1]
Metrics
- PDF Downloads(26)
- Abstract views(380)
- HTML views(11)