Citation: PAN Shan-Shan, WANG Li-Ming. The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2259-2268. doi: 10.3866/PKU.WHXB201510152
-
The atmospheric oxidation mechanism of o-xylene (oX) initiated by hydroxyl (OH) radicals has been investigated by using quantum chemistry, transition state theory, and unimolecular theory (RRKMME) calculations. Molecular structures of reactants, transition states, and products are optimized at M06- 2X/6-311++G(2df, 2p) level, and the electronic energies are calculated at the ROCBS-QB3 level. The classical transition state theory is employed to predict the rates or rate constants for all the reaction steps as well as the branching ratios of the reaction pathways. RRKM-ME calculations are employed to explore the pressure-dependence of the reaction kinetics. Under atmospheric conditions, the oxidation of o-Xylene is dominated by OH addition to the C1 and C3 positions, forming adducts oX-1-OH (R1) and oX-3-OH (R3), which will readily react with atmospheric oxygen. The reactions of R1 and R3 with O2 can proceed by irreversible H-abstraction to dimethylphenols (R3 only), or by reversible addition to form bicyclic radicals,which recombine with atmospheric oxygen to form bicyclic peroxy radicals (BPRs). BPRs will react with NO and/or HO2 in the atmosphere, forming organonitrate, hydroperoxides (ROOH), and bicyclic alkoxy radicals (BARs), of which the BARs eventually transfer to the final products, including biacetyl, butenedial, methylglyoxal, 4-oxo-2-pentenal, epoxy-2,3-butenedial, and a small amount of glyoxal. The products ROOH and methylglyoxal are considered to contribute to the formation of secondary organic aerosols. A new oxidation mechanism of oX in the atmosphere is proposed, based on the current theoretical predictions and previous experimental measurements, and the predicted product yields under high NO conditions are compared with previous experimental measurements. The effect of temperature on the oxidation mechanism is also discussed.
-
-
[1]
(1) Huang, C.; Chen, C. H.; Li, L.; Cheng, Z.; Wang, H. L.; Huang, H. Y.; Streets, D. G.; Wang, Y. J.; Zhang, G. F.; Chen, Y. R. Atmos. Chem. Phys. 2011, 11, 4105.
-
[2]
(2) Zheng, J.; Shao, M.; Che, W.; Zhang, L.; Zhong, L.; Zhang, Y.; Street, D. Environ. Sci. Technol. 2009, 43, 8580. doi: 10.1021/es901688e
-
[3]
(3) Li, L.; Wang, X. M. Int. J. Environ. Res. Public Health 2012, 9, 1859. doi: 10.3390/ijerph9051859
-
[4]
(4) Izumi, K.; Fukuyama, T. Atmos. Environ. A 1990, 24, 1433. doi: 10.1016/0960-1686(90)90052-O
-
[5]
(5) Odum, J. R.; Jungkamp, T. P. W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96
-
[6]
(6) Borras, E.; Tortajada-Genaro, L. A. Atmospheric Environment 2012, 47, 154. doi: 10.1016/j.atmosenv.2011.11.020
-
[7]
(7) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a
-
[8]
(8) Derwent, R. G.; Jenkin, M. E.; Passant, N. R.; Pilling, M. J. Environ. Sci. Policy 2007, 10, 445. doi: 10.1016/j.envsci.2007.01.005
-
[9]
(9) Carter, W. P. L. J. Air Waste Manage. Assoc. 1994, 44, 881.
-
[10]
(10) Carter, W. P. L.; Pierce, J. R.; Luo, D.; Malkina, I. L. Atmos. Environ. 1995, 29, 2499. doi: 10.1016/1352-2310(95)00149-S
-
[11]
(11) Hao, J. M.; Lü , Z. F.; Chu, B. W.; Wu, S.; Zhao, Z. Characterization, Experimental Study, and Modeling of Atmospheric Secondary Organic Aerosol; Science Press: Beijing, 2015. [郝吉明, 吕子峰, 楚碧武, 武山, 赵喆. 大气二次有机气溶胶污染特征及模拟研究. 北京: 科学出版社, 2015.]
-
[12]
(12) Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T. M.; Jacob, D. J.; Heald, C. L. Atmos. Chem. Phys. 2008, 8, 2405.
-
[13]
(13) Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1989, 21, 355.
-
[14]
(14) Anderson, R. S.; Czuba, E.; Ernst, D.; Huang, L.; Thompson, A. E.; Rudolph, J. J. Phys. Chem. A 2003, 107, 6191. doi: 10.1021/jp034256d
-
[15]
(15) Mehta, D.; Nguyen, A.; Montenegro, A.; Li, Z. J. Phys. Chem. A 2009, 113, 12942. doi: 10.1021/jp905074j
-
[16]
(16) Atkinson, R.; Aschmann, S. M.; Arey, J. Int. J. Chem. Kinet. 1991, 23, 77.
-
[17]
(17) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007
-
[18]
(18) Nishino, N.; Arey, J.; Atkinson, R. J. Phys. Chem. A 2010, 114, 10140. doi: 10.1021/jp105112h
-
[19]
(19) Bloss, C.; Wagner, V.; Jenkin, M. E.; Volkamer, R.; Bloss, W. J.; Lee, J. D.; Heard, D. E.; Wirtz, K.; Martin-Reviejo, M.; Rea, G.; Wenger, J. C.; Pilling, M. J. Atmos. Chem. Phys. 2005, 5, 641. doi: 10.5194/acp-5-641-2005
-
[20]
(20) Carter, W. P. L. Atmos. Environ. 2007, 44, 5324.
-
[21]
(21) Carter, W. P. L.; Heo, G. Atmos. Environ. 2013, 77, 404. doi: 10.1016/j.atmosenv.2013.05.021
-
[22]
(22) Bandow, H.; Washida, N.; Akimoto, H. Bull. Chem. Soc. Jpn. 1985, 58, 2531. doi: 10.1246/bcsj.58.2531
-
[23]
(23) Tuazon, E. C.; Leod, H. M.; Atkinson, R.; Carter, W. P. L. Environ. Sci. Technol. 1986, 20, 383. doi: 10.1021/es00146a010
-
[24]
(24) Arey, J.; Obermeyer, G.; Aschmann, S. M.; Chattopadhyay, S.; Cusick, R. D.; Atkinson, R. Environ. Sci. Technol. 2009, 43, 683. doi: 10.1021/es8019098
-
[25]
(25) Shepson, P. B.; Edney, E. O.; Corse, E. W. J. Phys. Chem. 1984, 88, 4122. doi: 10.1021/j150662a053
-
[26]
(26) Huang, M.; Zhang, W.; Wang, Z.; Hao, L.; Zhao, W.; Liu, X.; Long, B.; Fang, L. Int. J. Quantum Chem. 2008, 108, 954.
-
[27]
(27) Glowacki, D. R.; Wang, L.; Pilling, M. J. J. Phys. Chem. A 2009, 113, 5385. doi: 10.1021/jp9001466
-
[28]
(28) Wang, L.; Wu, R.; Xu, C. J. Phys. Chem. A 2013, 117, 14163.
-
[29]
(29) Wu, R.; Pan, S.; Li, Y.; Wang, L. J. Phys. Chem. A 2014, 118, 4533. doi: 10.1021/jp500077f
-
[30]
(30) Li, Y.; Wang, L. Phys. Chem. Chem. Phys. 2014, 16, 17908. doi: 10.1039/C4CP02027H
-
[31]
(31) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v
-
[32]
(32) Wang, L. ChemPhysChem 2015, 16, 1542. doi: 10.1002/cphc.201500012
-
[33]
(33) Wu, R.; Wang, S.; Wang, L. Chemosphere 2014, 111, 537. doi: 10.1016/j.chemosphere.2014.04.067
-
[34]
(34) Wood, G. P. F.; Radom, L.; Petersson, G. A.; Barnes, E. C.; Frisch, M. J.; Montgomery, J., J. A. J. Chem. Phys. 2006, 125, 094106.
-
[35]
(35) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley & Sons, Ltd: WestSussex, 2007.
-
[36]
(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford CT, 2009.
-
[37]
(37) Fernandez-Ramos, A.; Ellingson, B. A.; Meana-Paneda, R.; Marques, J. M. C.; Truhlar, D. G. Theor. Chem. Acc. 2007, 118, 813. doi: 10.1007/s00214-007-0328-0
-
[38]
(38) Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018. doi: 10.1021/ja003372g
-
[39]
(39) Pilling, M. J.; Seakins, P. W. Reaction Kinetics; Oxford University Press Inc.: New York, 1999.
-
[40]
(40) Johnson, H. S.; Heicklen, J. J. Phys. Chem. 1962, 66, 532. doi: 10.1021/j100809a040
-
[41]
(41) Forst, W. Unimolecular Reactions: a Concise Introduction; Cambridge University Press: Cambridge, 2003.
-
[42]
(42) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H.; Robinson, P. J. Unimolecular Reactions, 2nd ed.; Wiley: New York, 1996.
-
[43]
(43) Glowacki, D. R.; Liang, C. H.; Morley, C.; Pilling, M. J.; Robertson, S. H. J. Phys. Chem. A 2012, 116, 9545. doi: 10.1021/jp3051033
-
[44]
(44) Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810. doi: 10.1021/ja00517a004
-
[45]
(45) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; BlackwellScientific Publications: Boston, 1990.
-
[46]
(46) Malick, D. K.; Petersson, G. A.; Montgomery, J., J. A. J. Chem. Phys. 1998, 108, 5703.
-
[47]
(47) Birdsall, A. W.; Andreoni, J. F.; Elrod, M. J. J. Phys. Chem. A 2010, 114, 10655. doi: 10.1021/jp105467e
-
[48]
(48) Carlton, A. G.; Bhave, P. V.; Napelenok, S. L.; Edney, E. O.; Sarwar, G.; Pinder, R. W.; Pouliot, G.A.; Houyoux, M. Environ. Sci. Technol. 2010, 44, 8553. doi: 10.1021/es100636q
-
[49]
(49) Ng, N. L.; Kroll, J. H.; Chan, A. W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909.
-
[50]
(50) Orlando, J. J.; Tyndall, G. S. Chem. Soc. Rev. 2012, 41, 6294. doi: 10.1039/c2cs35166h
-
[1]
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[4]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[5]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[6]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[7]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[8]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[9]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[10]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[11]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[12]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[13]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[14]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[15]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[16]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[17]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[18]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[19]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[20]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[1]
Metrics
- PDF Downloads(15)
- Abstract views(414)
- HTML views(37)