Citation: LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong. Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2366-2374. doi: 10.3866/PKU.WHXB201510141
-
A Cu3(BTC)2 (copper(Ⅱ) benzene 1,3,5-tricarboxylate) metal organic framework (MOF) catalyst was successfully prepared through an electrochemical route and used for selective catalytic reduction of nitrogen oxide (NOx) with NH3 for the first time. After systematically optimizing the reaction conditions such as solvents, voltage, electrolyte concentration, and reaction time, pure Cu3(BTC)2 with high crystallinity was obtained in 97.2% yield. The physicochemical properties of the catalyst were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Raman spectroscopy, in situ Fourier transform infrared (FTIR) spectroscopy, temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). TGA results indicated that the framework was stable up to 310 ℃. The catalytic activity of Cu3(BTC)2 was evaluated using NO conversion as a model reaction. The Cu3(BTC)2 activation temperature significantly affected the catalytic activity. The Cu3(BTC)2 sample activated at 240 ℃ had the best catalytic activity and gave NO conversion of 90% at 220-280 ℃. A reaction mechanism was proposed based on the in situ FTIR spectroscopy results.
-
-
[1]
(1) Forzatti, P. Appl. Catal. A: Gen. 2001, 222 (1), 221. doi: 10.1016/S0926-860X(01)00832-8
-
[2]
(2) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28 (7), 1772. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28 (7), 1772.] doi: 10.3866/PKU.WHXB201204175
-
[3]
(3) Granger, P.; Parvulescu, V. I. Chem. Rev. 2011, 111, 3156. doi: 10.1021/cr100168g
-
[4]
(4) He, H.; Weng, D.; Zi, X. Y. Environ Sci. 2007, 28 (6), 1174. [贺泓, 翁端, 资新运. 环境科学, 2007, 28 (6), 1174.] doi: 10.13227/j.hjkx.2007.06.001
-
[5]
(5) Yao, X. J.; Gong, Y. T.; Li, H. L.; Yang, F. M. Acta Phys. -Chim. Sin. 2015, 31 (5), 818. [姚小江, 贡营涛, 李红丽, 杨复沫. 物理化学学报, 2015, 31 (5), 818.] doi: 10.3866/PKU.WHXB201503253
-
[6]
(6) Liu, F. D.; Shan, W. P.; Shi, X. Y.; He, H. Progress in Chemistry 2012, 24 (4), 447. [刘福东, 单文坡, 石晓燕, 贺泓. 化学进展, 2012, 24 (4), 447.]
-
[7]
(7) Roy, S.; Hegde, M. S.; Madras, G. Appl. Energ. 2009, 86, 2290. doi: 10.1016/j.apenergy.2009.03.022
-
[8]
(8) Li, F.; Lin, T.; Zhang, Q. L.; Gong, M. C.; Chen, Y. Q. Chin. J. Catal. 2009, 30 (2), 104. [李伟, 林涛, 张秋林, 龚茂初, 陈耀强. 催化学报, 2009, 30 (2), 104. ]
-
[9]
(9) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. doi: 10.1126/science.283.5405.1148
-
[10]
(10) Liang, Z.; Marshall, M.; Chaffee, A. L. Energy Fuels 2009, 23, 2787. doi: 10.1021/ef800938e
-
[11]
(11) Luz, I.; Xamena, F. X. L. I.; Corma, A. J. Catal. 2012, 285, 286. doi: 10.1016/j.jcat.2011.10.001
-
[12]
(12) Zhang, H.; Deria, P.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2015, 8, 1503. doi: 10.1039/c5ee00808e
-
[13]
(13) Davydovskaya, P.; Pohle, R.; Tawil, A.; Fleischer, M. Sens. Actuators B: Chem. 2013, 187, 143. doi: 10.1016/j.snb.2012.10.023
-
[14]
(14) Ye, J. Y.; Liu, C. J. Chem. Commun. 2011, 47, 2168. doi: 10.1039/c0cc04944a
-
[15]
(15) Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 934. doi: 10.1021/cr200304e
-
[16]
(16) Mueller, U.; Puetter, H.; Hesse, M.; Wessel, H. Method for Electrochemical Production of a Crystalline Porous Metal Organic Skeleton Material. WO 2005/049892, 2005-06-02.
-
[17]
(17) Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fan, C. M.; Hao, X. G. RSC Adv. 2014, 4, 15723. doi: 10.1039/c3ra47744d
-
[18]
(18) Joaristi, A. M.; Juan-Alcañ iz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Cryst. Growth Des. 2012, 12, 3491. doi: 10.1021/cg300552w
-
[19]
(19) Van Assche, T. R. C.; Desmet, G.; Ameloot, R.; De Vos, D. E.; Terryn, H.; Denayer, J. F. M. Microporous Mesoporous Mat. 2012, 158, 211. doi: 10.1016/j.micromeso.2012.03.029
-
[20]
(20) Loera-Serna, S.; Oliver-Tolentino, M. A.; de Lourdes López-Núñ ez, M.; Santana-Cruz, A.; Guzmán-Vargas, A.; Cabrera-Sierra, R.; Beltrán, H. I.; Flores, J. J. Alloy. Compd. 2012, 540, 115. doi: 10.1016/j.jallcom.2012.06.030
-
[21]
(21) Hu, J.; Cai, H.; Ren, H.; Wei, Y.; Xu, Z.; Liu, H.; Hu, Y. Ind. Eng. Chem. Res. 2010, 49, 12607. doi: 10.1021/ie1014958
-
[22]
(22) Liu, Y.; Zhang, T.; Wu, W.; Jiang, S.; Zhang, H.; Li, B. RSC Adv. 2015, 5, 56021. doi: 10.1039/c5ra05595d
-
[23]
(23) Yan, B.; Chen, L.; Liu, Y.; Zhu, G.; Wang, C.; Zhang, H.; Yang, G.; Ye, H.; Yuan, A. Cryst. Eng. Comm. 2014, 16, 10229. doi: 10.1039/c4ce01277a
-
[24]
(24) Ameloot, R.; Pandey, L.; Van der Auweraer, M.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Chem. Commun. 2010, 46, 3736. doi: 10.1039/c001544j
-
[25]
(25) Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8636. doi: 10.1021/la8008656
-
[26]
(26) Prestipino, C.; Regli, L.; Vitillo, J.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P.; Kongshaug, K.; Bordiga, S. Chem. Mater. 2006, 18, 1342. doi: 10.1021/cm052191g
-
[27]
(27) Vishwanathan, V.; Jun, K. W.; Kim, J. W.; Roh, H. S. Appl. Catal. A: Gen. 2004, 276, 253. doi: 10.1016/j.apcata.2004.08.011
-
[28]
(28) Zhang, R.; Teoh, W. Y.; Amal, R.; Chen, B.; Kaliaguine, S. J. Catal. 2010, 272, 212. doi: 10.1016/j.jcat.2010.04.001
-
[29]
(29) Sun, C.; Zhu, J.; Lv, Y.; Qi, L.; Liu, B.; Gao, F.; Sun, K.; Dong, L.; Chen, Y. Appl.Catal, B: Environ. 2011, 103, 215. doi: 10.1016/j.apcatb.2011.01.028
-
[30]
(30) Koebel, M.; Madia, G.; Raimondi, F.; Wokaun, A. J. Catal. 2002, 209, 159. doi: 10.1006/jcat.2002.3624
-
[31]
(31) Inomata, M.; Miyamoto, A.; Murakami, Y. J. Catal. 1980, 62 (1), 146. doi: 10.1016/0021-9517(80)90429-7
-
[32]
(32) Takagi, M.; Kawai, T.; Soma, M.; Onishi, T.; Tamaru, K. J. Phys. Chem. 1976, 80 (4), 430. doi: 10.1021/j100545a019
-
[33]
(33) Liu, F.; He, H.; Zhang, C.; Shan, W.; Shi, X. Catalysis Today 2011, 175, 23. doi: 10.1016/j.cattod.2011.02.049
-
[34]
(34) Peng, Y.; Li, K.; Li, J. Appl. Catal. B: Environ. 2013, 140-141, 490. doi: 10.1016/j.apcatb.2013.04.043
-
[35]
(35) Chen, L.; Li, J.; Ge, M. Environ. Sci. Technol. 2010, 44, 9592. doi: 10.1021/es102692b
-
[36]
(36) Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. J. Mater. Chem. 2001, 11, 903. doi: 10.1039/b007533g
-
[37]
(37) Qi, G.; Yang, R. T.; Chang, R. Appl. Catal. B: Environ. 2004, 51, 99. doi: 10.1016/j.apcatb.2004.01.023
-
[1]
-
-
[1]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[2]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[3]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[5]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[6]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[7]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[8]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[11]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[12]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[13]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[14]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[15]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[16]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[17]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[18]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[19]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[20]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[1]
Metrics
- PDF Downloads(18)
- Abstract views(312)
- HTML views(16)