Citation: WANG Xiao-Chen, WANG Ying-Ming, LIU Wei, BAI Ruo-Peng, LIU Yan-Fang, XIAO Li, LU Jun-Tao, ZHUANG Lin. Influence of 12-Crown-4 on Oxygen Electrode of Aprotic Li-O2 Battery[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 343-348. doi: 10.3866/PKU.WHXB201510133 shu

Influence of 12-Crown-4 on Oxygen Electrode of Aprotic Li-O2 Battery

  • Corresponding author: XIAO Li, 
  • Received Date: 12 August 2015
    Available Online: 9 October 2015

    Fund Project: 国家重点基础研究发展规划项目(973)(2012CB932800,2012CB215500) (973)(2012CB932800,2012CB215500)国家自然科学基金(21125312,21203142,21573167) (21125312,21203142,21573167)国家教育部博士点专项基金(20110141130002) (20110141130002)中央高校基本科研业务费专项资金(2014203020207)资助 (2014203020207)

  • One of the major challenges with Li-O2 batteries is that the discharge product, Li2O2, blocks the gas pathway because of its poor solubility in aprotic solvents. In this work, 12-crown-4 ether was used as an additive to capture Li+, and its influence on the solubility of the discharge products of the oxygen electrode was investigated. Multiple electrochemical methods, including cyclic voltammetry and rotatingring disk electrode, were used. The results show that the addition of only 5% of 12-crown-4 ether significantly improves the stability of the oxygen reduction product O2-, and decreases the formation of solid Li2O2. We used a combination of the hard-soft-acid-base theory and ab initio calculations to explain these observations.
  • 加载中
    1. [1]

      (1) Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. doi: 10.1149/1.1836378

    2. [2]

      (2) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. C 2010, 1, 2193.

    3. [3]

      (3) Wang, Y. G.; Zhou, H. S. J. Power Sources 2010, 195, 358. doi: 10.1016/j.jpowsour.2009.06.109

    4. [4]

      (4) Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi: 10.1021/ja056811q

    5. [5]

      (5) Leskes, M.; Drewett, N. E.; Hardwick, L. J.; Bruce, P. G.; Goward, G. R.; Grey, C. P. Angew. Chem. Int. Edit. 2012, 51, 8560. doi: 10.1002/anie.201202183

    6. [6]

      (6) Choi, N.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Edit. 2012, 51, 9994. doi: 10.1002/anie.201201429

    7. [7]

      (7) Yoshino, A. Angew. Chem. Int. Edit. 2012, 51, 5798. doi: 10.1002/anie.201105006

    8. [8]

      (8) Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Adv. Funct. Mater. 2012, 22, 3699. doi: 10.1002/adfm.v22.17

    9. [9]

      (9) Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Adv. Funct. Mater. 2013, 23, 987. doi: 10.1002/adfm.v23.8

    10. [10]

      (10) Park, M.; Sun, H.; Lee, H.; Lee, J.; Cho, J. Adv. Funct. Mater. 2012, 2, 780.

    11. [11]

      (11) Cao, R. G.; Lee, J.; Liu, M. L.; Cho, J. Adv. Funct. Mater. 2012, 2, 816.

    12. [12]

      (12) Oh, S. H.; Nazar, L. F. Adv. Funct. Mater. 2012, 2, 903.

    13. [13]

      (13) Lim, H.; Park, K.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Robles, R. O.; Lepró, X.; Baughman, R. H.; Kang, K. Adv. Mater. 2013, 25, 1348. doi: 10.1002/adma.v25.9

    14. [14]

      (14) Shao, Y. Y.; Park, S.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J. ACS Catal. 2012, 2, 844. doi: 10.1021/cs300036v

    15. [15]

      (15) Schaetz, A.; Zeltner, M.; Stark, W. J. ACS Catal. 2012, 2, 1267. doi: 10.1021/cs300014k

    16. [16]

      (16) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191

    17. [17]

      (17) Ren, X. D.; Wu, Y. Y. J. Am. Chem. Soc. 2013, 135, 2923. doi: 10.1021/ja312059q

    18. [18]

      (18) Hartmann, P.; Bender, C. L.; Vracar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. Nat. Mater. 2013, 12, 228.

    19. [19]

      (19) Li, C. M.; Fontaine, O.; Freunberger, S. A.; Johnson, L.; Grugeon, S.; Laruelle, S.; Bruce, P. G.; Armand, M. J. Phys. Chem. C 2014, 118, 3393.

    20. [20]

      (20) Laoire, C.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. J. Electrochem. Soc. 2011, 158, A302.

    21. [21]

      (21) Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50.

    22. [22]

      (22) Liu, T.; Leskes, M.; Yu, W. J.; Moore, A. J.; Zhou, L. N.; Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi: 10.1126/science.aac7730

    23. [23]

      (23) Li, L. F.; Lee, H. S.; Li, H.; Yang, X. Q.; Huang, X. J. Electrochem. Commun. 2009, 11, 2296. doi: 10.1016/j.elecom.2009.10.015

    24. [24]

      (24) Zheng, D.; Lee, H. S.; Yang, X. Q.; Qu, D. Electrochem. Commun. 2013, 28, 17. doi: 10.1016/j.elecom.2012.12.003

    25. [25]

      (25) Shanmukaraj, D.; Grugeon, S.; Gachot, G.; Laruelle, S.; Mathiron, D.; Tarascon, J. M.; Armand, M. J. Am. Chem. Soc. 2010, 132, 3055. doi: 10.1021/ja9093814

    26. [26]

      (26) Xie, B.; Lee, H. S.; Li, H.; Yang, X. Q.; McBreen, J.; Chen, L. Q. Electrochem. Commun. 2008, 10, 1195. doi: 10.1016/j.elecom.2008.05.043

    27. [27]

      (27) Lopez, N.; Graham, D. J.; McGuire, R., Jr.; Alliger, G. E.; Yang, S. H.; Cummins, C. C.; Nocera, D. G. Science 2012, 335, 3243.

    28. [28]

      (28) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M. J. Comput. Chem. 1993, 14, 1347.

    29. [29]

      (29) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi: 10.1021/jp102019y

    30. [30]

      (30) Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abrahama, K. M. J. Electrochem. Soc. 2013, 160, A259.

    31. [31]

      (31) Allen, C. J.; Hwang, J.; Kautz, R.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. J. Phys. Chem. C 2012, 116, 20755. doi: 10.1021/jp306718v

    32. [32]

      (32) Herranz, J.; Garsuch, A.; Gasteiger, H. A. J. Phys. Chem. C 2012, 116, 19084.

    33. [33]

      (33) Albery, J. W.; Hitchman, L. M.; Ulstrup, J. Trans. Faraday Soc. 1968, 64, 2831. doi: 10.1039/tf9686402831

    34. [34]

      (34) Bard, J.; Faulkner, L. R. Electrochemical Methods: Fundamentals & Applications, 2nd ed.; Wiley: Hoboken, 2001; p 669.

    35. [35]

      (35) Pearson, G. R. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001

    36. [36]

      (36) Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé F.; Bruce, P. G. Angew. Chem. Int. Edit. 2011, 50, 8609. doi: 10.1002/anie.201102357

    37. [37]

      (37) Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angew. Chem. Int. Edit. 2011, 50, 6351. doi: 10.1002/anie.201100879

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    17. [17]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(1)
  • Abstract views(370)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return